0000000000793511

AUTHOR

Zhuomin Liu

showing 3 related works from this author

Maximal potentials, maximal singular integrals, and the spherical maximal function

2014

We introduce a notion of maximal potentials and we prove that they form bounded operators from L to the homogeneous Sobolev space Ẇ 1,p for all n/(n − 1) < p < n. We apply this result to the problem of boundedness of the spherical maximal operator in Sobolev spaces.

Sobolev spaceMathematics::Functional AnalysisHomogeneousApplied MathematicsGeneral MathematicsBounded functionMathematical analysisMathematics::Analysis of PDEsMaximal operatorMaximal functionSingular integralMathematicsSobolev inequalityProceedings of the American Mathematical Society
researchProduct

A note on Sobolev isometric immersions below W2,2 regularity

2017

Abstract This paper aims to investigate the Hessian of second order Sobolev isometric immersions below the natural W 2 , 2 setting. We show that the Hessian of each coordinate function of a W 2 , p , p 2 , isometric immersion satisfies a low rank property in the almost everywhere sense, in particular, its Gaussian curvature vanishes almost everywhere. Meanwhile, we provide an example of a W 2 , p , p 2 , isometric immersion from a bounded domain of R 2 into R 3 that has multiple singularities.

Hessian matrixPure mathematicsIsometric exercise01 natural sciencessymbols.namesake0103 physical sciencesGaussian curvatureImmersion (mathematics)Almost everywhereisometric immersions0101 mathematicsMathematics010102 general mathematicsMathematical analysista111Hessian determinantSobolev spaceComputational Theory and MathematicsBounded functionsymbolsGravitational singularityMathematics::Differential Geometry010307 mathematical physicsGeometry and Topologydegenerate Monge–Ampère equationAnalysisDifferential Geometry and its Applications
researchProduct

Approximation by mappings with singular Hessian minors

2018

Let $\Omega\subset\mathbb R^n$ be a Lipschitz domain. Given $1\leq p<k\leq n$ and any $u\in W^{2,p}(\Omega)$ belonging to the little H\"older class $c^{1,\alpha}$, we construct a sequence $u_j$ in the same space with $\operatorname{rank}D^2u_j<k$ almost everywhere such that $u_j\to u$ in $C^{1,\alpha}$ and weakly in $W^{2,p}$. This result is in strong contrast with known regularity behavior of functions in $W^{2,p}$, $p\geq k$, satisfying the same rank inequality.

Mathematics - Differential GeometryHessian matrix35B99 46T10Monge-Ampère equationRank (differential topology)Space (mathematics)01 natural sciencesHessian minorssymbols.namesakeMathematics - Analysis of PDEsLipschitz domainFOS: MathematicsMathematics::Metric GeometryAlmost everywhere0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötDiscrete mathematicsSequenceApplied Mathematicsta111010102 general mathematics16. Peace & justiceFunctional Analysis (math.FA)nonlinear approximationMathematics - Functional Analysis010101 applied mathematicsDifferential Geometry (math.DG)symbolsfunktionaalianalyysiAnalysisAnalysis of PDEs (math.AP)Nonlinear Analysis
researchProduct