0000000000793511
AUTHOR
Zhuomin Liu
Maximal potentials, maximal singular integrals, and the spherical maximal function
We introduce a notion of maximal potentials and we prove that they form bounded operators from L to the homogeneous Sobolev space Ẇ 1,p for all n/(n − 1) < p < n. We apply this result to the problem of boundedness of the spherical maximal operator in Sobolev spaces.
A note on Sobolev isometric immersions below W2,2 regularity
Abstract This paper aims to investigate the Hessian of second order Sobolev isometric immersions below the natural W 2 , 2 setting. We show that the Hessian of each coordinate function of a W 2 , p , p 2 , isometric immersion satisfies a low rank property in the almost everywhere sense, in particular, its Gaussian curvature vanishes almost everywhere. Meanwhile, we provide an example of a W 2 , p , p 2 , isometric immersion from a bounded domain of R 2 into R 3 that has multiple singularities.
Approximation by mappings with singular Hessian minors
Let $\Omega\subset\mathbb R^n$ be a Lipschitz domain. Given $1\leq p<k\leq n$ and any $u\in W^{2,p}(\Omega)$ belonging to the little H\"older class $c^{1,\alpha}$, we construct a sequence $u_j$ in the same space with $\operatorname{rank}D^2u_j<k$ almost everywhere such that $u_j\to u$ in $C^{1,\alpha}$ and weakly in $W^{2,p}$. This result is in strong contrast with known regularity behavior of functions in $W^{2,p}$, $p\geq k$, satisfying the same rank inequality.