6533b873fe1ef96bd12d5920

RESEARCH PRODUCT

Approximation by mappings with singular Hessian minors

Mohammad Reza PakzadJan MalýZhuomin Liu

subject

Mathematics - Differential GeometryHessian matrix35B99 46T10Monge-Ampère equationRank (differential topology)Space (mathematics)01 natural sciencesHessian minorssymbols.namesakeMathematics - Analysis of PDEsLipschitz domainFOS: MathematicsMathematics::Metric GeometryAlmost everywhere0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötDiscrete mathematicsSequenceApplied Mathematicsta111010102 general mathematics16. Peace & justiceFunctional Analysis (math.FA)nonlinear approximationMathematics - Functional Analysis010101 applied mathematicsDifferential Geometry (math.DG)symbolsfunktionaalianalyysiAnalysisAnalysis of PDEs (math.AP)

description

Let $\Omega\subset\mathbb R^n$ be a Lipschitz domain. Given $1\leq p<k\leq n$ and any $u\in W^{2,p}(\Omega)$ belonging to the little H\"older class $c^{1,\alpha}$, we construct a sequence $u_j$ in the same space with $\operatorname{rank}D^2u_j<k$ almost everywhere such that $u_j\to u$ in $C^{1,\alpha}$ and weakly in $W^{2,p}$. This result is in strong contrast with known regularity behavior of functions in $W^{2,p}$, $p\geq k$, satisfying the same rank inequality.

https://doi.org/10.1016/j.na.2018.06.015