0000000000797714

AUTHOR

Ceiridwen J. Edwards

Early history of European domestic cattle as revealed by ancient DNA

We present an extensive ancient DNA analysis of mainly Neolithic cattle bones sampled from archaeological sites along the route of Neolithic expansion, from Turkey to North-Central Europe and Britain. We place this first reasonable population sample of Neolithic cattle mitochondrial DNA sequence diversity in context to illustrate the continuity of haplotype variation patterns from the first European domestic cattle to the present. Interestingly, the dominant Central European pattern, a starburst phylogeny around the modal sequence, T3, has a Neolithic origin, and the reduced diversity within this cluster in the ancient samples accords with their shorter history of post-domestic accumulation…

research product

The genomic history of the Iberian Peninsula over the past 8000 years

We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that pre…

research product

Meta-Analysis of Mitochondrial DNA Reveals Several Population Bottlenecks during Worldwide Migrations of Cattle

Several studies have investigated the differentiation of mitochondrial DNA in Eurasian, African and American cattle as well as archaeological bovine material. A global survey of these studies shows that haplogroup distributions are more stable in time than in space. All major migrations of cattle have shifted the haplogroup distributions considerably with a reduction of the number of haplogroups and/or an expansion of haplotypes that are rare or absent in the ancestral populations. The most extreme case is the almost exclusive colonization of Africa by the T1 haplogroup, which is rare in Southwest Asian cattle. In contrast, ancient samples invariably show continuity with present-day cattle …

research product

Correction for Frantz et al., Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

Significance Archaeological evidence indicates that domestic pigs arrived in Europe, alongside farmers from the Near East ∼8,500 y ago, yet mitochondrial genomes of modern European pigs are derived from European wild boars. To address this conundrum, we obtained mitochondrial and nuclear data from modern and ancient Near Eastern and European pigs. Our analyses indicate that, aside from a coat color gene, most Near Eastern ancestry in the genomes of European domestic pigs disappeared over 3,000 y as a result of interbreeding with local wild boars. This implies that pigs were not domesticated independently in Europe, yet the first 2,500 y of human-mediated selection applied by Near Eastern Ne…

research product

Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

International audience; Archaeological evidence indicates that pig domestication had begun by ∼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ∼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local Euro-pean wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hyp…

research product

Detecting the T1 cattle haplogroup in the Iberian Peninsula from Neolithic to medieval times: new clues to continuous cattle migration through time

Abstract The spread of domestic animals through time is one of the topics studied by archaeologists to assess human trade and migration. Here we present mitochondrial analysis of 42 archaeological cattle ( Bos taurus ) bone samples, from 16 different sites in the Iberian Peninsula and covering a broad timeframe (from the early Neolithic to the Middle Ages), to provide evidence about the origin and dispersion of the T1 cattle haplogroup in relation to human contacts and movements. The presence of the T1 haplotype in one sample from an early Neolithic site close to the Mediterranean coast of Iberia, and its continuing presence in the Peninsula during Roman and Medieval times, clearly demonstr…

research product

Cytochrome b sequences of ancient cattle and wild ox support phylogenetic complexity in the ancient and modern bovine populations.

Mitochondrial DNA has been the traditional marker for the study of animal domestication, as its high mutation rate allows for the accumulation of molecular diversity within the time frame of domestic history. Additionally, it is exclusively maternally inherited and haplotypes become part of the domestic gene pool via actual capture of a female animal rather than by interbreeding with wild populations. Initial studies of British aurochs identified a haplogroup, designated P, which was found to be highly divergent from all known domestic haplotypes over the most variable portion of the D-loop. Additional analysis of a large and geographically representative sample of aurochs from northern and…

research product

The genomic history of the Iberian Peninsula over the past 8000 years

We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula.We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming.We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry.We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that presen…

research product