0000000000800685
AUTHOR
Yuji Kaneko
Central and Peripheral Secondary Cell Death Processes after Transient Global Ischemia in Nonhuman Primate Cerebellum and Heart
Cerebral ischemia and its pathological sequelae are responsible for severe neurological deficits generally attributed to the neural death within the infarcted tissue and adjacent regions. Distal brain regions, and even peripheral organs, may be subject to more subtle consequences of the primary ischemic event which can initiate parallel disease processes and promote comorbid symptomology. In order to characterize the susceptibility of cerebellar brain regions and the heart to transient global ischemia (TGI) in nonhuman primates (NHP), brain and heart tissues were harvested 6 months post-TGI injury. Immunostaining analysis with unbiased stereology revealed significant cell death in lobule II…
May the force be with you: Transfer of healthy mitochondria from stem cells to stroke cells
Stroke is a major cause of death and disability in the United States and around the world with limited therapeutic option. Here, we discuss the critical role of mitochondria in stem cell-mediated rescue of stroke brain by highlighting the concept that deleting the mitochondria from stem cells abolishes the cells’ regenerative potency. The application of innovative approaches entailing generation of mitochondria-voided stem cells as well as pharmacological inhibition of mitochondrial function may elucidate the mechanism underlying transfer of healthy mitochondria to ischemic cells, thereby providing key insights in the pathology and treatment of stroke and other brain disorders plagued with…
Translating intracarotid artery transplantation of bone marrow-derived NCS-01 cells for ischemic stroke: Behavioral and histological readouts and mechanistic insights into stem cell therapy
Abstract The present study used in vitro and in vivo stroke models to demonstrate the safety, efficacy, and mechanism of action of adult human bone marrow‐derived NCS‐01 cells. Coculture with NCS‐01 cells protected primary rat cortical cells or human neural progenitor cells from oxygen glucose deprivation. Adult rats that were subjected to middle cerebral artery occlusion, transiently or permanently, and subsequently received intracarotid artery or intravenous transplants of NCS‐01 cells displayed dose‐dependent improvements in motor and neurological behaviors, and reductions in infarct area and peri‐infarct cell loss, much better than intravenous administration. The optimal dose was 7.5 × …