0000000000802470

AUTHOR

U. Von Barth

Towards nonlocal density functionals by explicit modelling of the exchange-correlation hole in inhomogeneous systems

We put forward new approach for the development of a non-local density functional by a direct modeling of the shape of exchange-correlation (xc) hole in inhomogeneous systems. The functional is aimed at giving an accurate xc-energy and an accurate corresponding xc-potential even in difficult near-degeneracy situations such as molecular bond breaking. In particular we demand that: (1) the xc hole properly contains -1 electron, (2) the xc-potential has the asymptotic -1/r behavior outside finite systems and (3) the xc-potential has the correct step structure related to the derivative discontinuities of the xc-energy functional. None of the currently existing functionals satisfies all these re…

research product

Fluctuating parts of nuclear ground state correlation energies

Background: Heavy atomic nuclei are often described using the Hartree-Fock-Bogoliubov (HFB) method. In principle, this approach takes into account Pauli effects and pairing correlations while other correlation effects are mimicked through the use of effective density-dependent interactions. Purpose: Investigate the influence of higher order correlation effects on nuclear binding energies using Skyrme's effective interaction. Methods: A cut-off in relative momenta is introduced in order to remove ultraviolet divergences caused by the zero-range character of the interaction. Corrections to binding energies are then calculated using the quasiparticle-random-phase approximation (QRPA) and secon…

research product