6533b85dfe1ef96bd12bf214

RESEARCH PRODUCT

Fluctuating parts of nuclear ground state correlation energies

J. ToivanenB. G. CarlssonU. Von Barth

subject

PhysicsNuclear and High Energy PhysicsNuclear Theoryta114Nuclear TheoryBinding energyFOS: Physical sciencesPerturbation (astronomy)ObservableNuclear Theory (nucl-th)symbols.namesakePauli exclusion principleQuantum mechanicsPairingQuantum electrodynamicsAtomic nucleussymbolsCutoffGround state

description

Background: Heavy atomic nuclei are often described using the Hartree-Fock-Bogoliubov (HFB) method. In principle, this approach takes into account Pauli effects and pairing correlations while other correlation effects are mimicked through the use of effective density-dependent interactions. Purpose: Investigate the influence of higher order correlation effects on nuclear binding energies using Skyrme's effective interaction. Methods: A cut-off in relative momenta is introduced in order to remove ultraviolet divergences caused by the zero-range character of the interaction. Corrections to binding energies are then calculated using the quasiparticle-random-phase approximation (QRPA) and second order many-body perturbation theory (MBPT2). Result: Contributions to the correlation energies are evaluated for several isotopic chains and an attempt is made to disentangle which parts give rise to fluctuations that may be difficult to incorporate on the HFB level. The dependence of the results on the cut-off is also investigated. Conclusions: The improved interaction allows explicit summations of perturbation series which is useful for the description of some nuclear observables. However, refits of the interaction parameters are needed to obtain more quantitative results.

10.1103/physrevc.87.054303http://juuli.fi/Record/0036417913