0000000000803798

AUTHOR

Mattia Saita

showing 3 related works from this author

Orientation of non-spherical protonated water clusters revealed by infrared absorption dichroism

2018

Infrared continuum bands that extend over a broad frequency range are a key spectral signature of protonated water clusters. They are observed for many membrane proteins that contain internal water molecules, but their microscopic mechanism has remained unclear. Here we compute infrared spectra for protonated and unprotonated water chains, discs, and droplets from ab initio molecular dynamics simulations. The continuum bands of the protonated clusters exhibit significant anisotropy for chains and discs, with increased absorption along the direction of maximal cluster extension. We show that the continuum band arises from the nuclei motion near the excess charge, with a long-ranged amplifica…

Materials scienceInfraredScienceGeneral Physics and AstronomyInfrared spectroscopy02 engineering and technology010402 general chemistry53001 natural sciencesMolecular physicsArticleTheoretical chemistryGeneral Biochemistry Genetics and Molecular BiologyPolarizabilityProton transportMembrane proteinsCluster (physics)Water clusterlcsh:ScienceInfrared spectroscopyQuantitative Biology::BiomoleculesMultidisciplinarybiologyQBacteriorhodopsinGeneral ChemistryDichroism021001 nanoscience & nanotechnology0104 chemical sciencesPhysical chemistrybiology.proteinlcsh:Q0210 nano-technologyNature Communications
researchProduct

pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin

2017

Infrared spectroscopy has been used in the past to probe the dynamics of internal proton transfer reactions taking place during the functional mechanism of proteins but has remained mostly silent to protonation changes in the aqueous medium. Here, by selectively monitoring vibrational changes of buffer molecules with a temporal resolution of 6 µs, we have traced proton release and uptake events in the light-driven proton-pump bacteriorhodopsin and correlate these to other molecular processes within the protein. We demonstrate that two distinct chemical entities contribute to the temporal evolution and spectral shape of the continuum band, an unusually broad band extending from 2,300 to well…

0301 basic medicineModels MolecularCytoplasmNuclear TheoryMolecular ConformationInfrared spectroscopyIonic bondingProtonationBuffers010402 general chemistry53001 natural sciences03 medical and health sciencesDeprotonationSpectroscopy Fourier Transform InfraredMoleculeNuclear ExperimentMultidisciplinarybiologyChemistryWaterBacteriorhodopsinHydrogen-Ion Concentration0104 chemical sciencesKinetics030104 developmental biologyPNAS PlusChemical physicsCytoplasmTemporal resolutionBacteriorhodopsinsbiology.proteinPhysics::Accelerator PhysicsProtonsMetabolic Networks and PathwaysProtein Binding
researchProduct

Photoexcitation of the P4480 State Induces a Secondary Photocycle That Potentially Desensitizes Channelrhodopsin-2

2018

Channelrhodopsins (ChRs) are light-gated cation channels. In spite of their wide use to activate neurons with light, the photocurrents of ChRs rapidly decay in intensity under both continuous illum...

0301 basic medicine010405 organic chemistryChemistryChannelrhodopsinGeneral Chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesPhotoexcitation03 medical and health sciences030104 developmental biologyColloid and Surface ChemistryBiophysicsJournal of the American Chemical Society
researchProduct