0000000000805180

AUTHOR

Anke Lüdge

Floating Zone Growth of Silicon

Abstract The floating zone (FZ) technique changed from a crucible-free purification method into a growth technique mainly for high purity silicon crystals. The melt zone is inductively heated by the high frequency magnetic field of a sophisticated one-turn induction coil being the heart of the FZ growth. The needle-eye technique allows for crystals with large diameters beyond the capillary limitations of a cylindrical zone, but both electric breakthrough at the coil slit and bursting of the crystal by thermomechanical stress presently limit the diameter to 200 mm. A novel gFZ concept is depicted that works with granular silicon feedstock instead of expensive feed rods. The automation of the…

research product

Influence of the three dimensionality of the HF electromagnetic field on resistivity variations in Si single crystals during FZ growth

Abstract Three-dimensional numerical modelling is carried out to analyse the floating zone crystal growth with the needle-eye technique used for the production of high-quality silicon single crystals with large diameters ( ⩾100 mm ). Since the pancake inductor has only one turn, the EM field and the distribution of heat sources and EM forces are only roughly axisymmetric. The non-symmetry together with crystal rotation reflects itself on the hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. The non-symmetric high-frequency electromagnetic field of …

research product