0000000000808243

AUTHOR

Gaetano Paterniti

showing 2 related works from this author

Identification and characterization of the nano-sized vesicles released by muscle cells

2013

AbstractSeveral cell types secrete small membranous vesicles that contain cell-specific collections of proteins, lipids, and genetic material. The function of these vesicles is to allow cell-to-cell signaling and the horizontal transfer of their cargo molecules. Here, we demonstrate that muscle cells secrete nano-sized vesicles and that their release increases during muscle differentiation. Analysis of these nanovesicles allowed us to characterize them as exosome-like particles and to define the potential role of the multifunctional protein Alix in their biogenesis.

Cell typeCellular differentiationBiophysicsBiologyExosomesBiochemistryExosomeExosome; Nanovesicle; Alix; Ozz-E3 ubiquitin ligase; Muscle cellArticleCell Line03 medical and health sciencesMice0302 clinical medicineOzz-E3 ubiquitin ligaseStructural BiologyGeneticsMyocyteAnimalsSecretionMolecular Biology030304 developmental biology0303 health sciencesMuscle CellsSettore BIO/16 - Anatomia UmanaVesicleCalcium-Binding ProteinsCell MembraneMuscle cellCell DifferentiationCell BiologyCell biologyNanostructuresExosomeAlixCell culture030220 oncology & carcinogenesisNanovesicleBiogenesisFEBS Letters
researchProduct

Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle

2012

Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and pro…

Ubiquitin-Protein LigasesMuscle Fibers Skeletalmacromolecular substancesBiochemistryCell LineMiceCell MovementTwo-Hybrid System TechniquesmedicineCell AdhesionAnimalsProtein Interaction Domains and MotifsPseudopodiaMuscle SkeletalMolecular BiologyActinMice KnockoutbiologyMyogenesisSettore BIO/16 - Anatomia UmanaCalcium-Binding ProteinsUbiquitinationActin remodelingSkeletal muscleUbiquitin-Protein Ligase ComplexesCell BiologyActin cytoskeletonUbiquitin ligaseCell biologyRepressor ProteinsActin CytoskeletonProtein Transportmedicine.anatomical_structureUbiquitin ligase complexbiology.proteinCell Migration Myogenesis Skeletal Muscle Ubiquitin Ligase Ubiquitination Alix F-actin Ozz-E3 Ubiquitin Ligase Skeletal Muscle CellsCortactinCortactinProtein Binding
researchProduct