0000000000811965

AUTHOR

Jürgen Eschner

Extending Quantum Links: Modules for Fiber‐ and Memory‐Based Quantum Repeaters

We analyze elementary building blocks for quantum repeaters based on fiber channels and memory stations. Implementations are considered for three different physical platforms, for which suitable components are available: quantum dots, trapped atoms and ions, and color centers in diamond. We evaluate and compare the performances of basic quantum repeater links for these platforms both for present-day, state-of-the-art experimental parameters as well as for parameters that could in principle be reached in the future. The ultimate goal is to experimentally explore regimes at intermediate distances, up to a few 100 km, in which the repeater-assisted secret key transmission rates exceed the maxi…

research product

Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion.

We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled ${\mathrm{Ba}}^{+}$ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.

research product