6533b834fe1ef96bd129e252

RESEARCH PRODUCT

Extending Quantum Links: Modules for Fiber‐ and Memory‐Based Quantum Repeaters

Wolfgang AltDieter MeschedeJürgen EschnerHolger BocheSven HöflingHarald WeinfurterHarald WeinfurterOliver BensonChristian DeppeChristoph BecherPeter Van LoockPeter MichlerFrank Schmidt

subject

Memory coherenceNuclear and High Energy Physics530 PhysicsComputer scienceFOS: Physical sciencestrapped atoms/ionsquantum dotscolor centersQuantum stateElectronic engineeringddc:530quantum communicationElectrical and Electronic EngineeringQuantum information scienceQuantumMathematical PhysicsRepeaterQuantum Physicsbusiness.industryStatistical and Nonlinear Physics530 PhysikCondensed Matter Physicsquantum repeatersElectronic Optical and Magnetic MaterialsComputational Theory and MathematicsTransmission (telecommunications)Quantum dotPhotonicsQuantum Physics (quant-ph)business

description

We analyze elementary building blocks for quantum repeaters based on fiber channels and memory stations. Implementations are considered for three different physical platforms, for which suitable components are available: quantum dots, trapped atoms and ions, and color centers in diamond. We evaluate and compare the performances of basic quantum repeater links for these platforms both for present-day, state-of-the-art experimental parameters as well as for parameters that could in principle be reached in the future. The ultimate goal is to experimentally explore regimes at intermediate distances, up to a few 100 km, in which the repeater-assisted secret key transmission rates exceed the maximal rate achievable via direct transmission. We consider two different protocols, one of which is better adapted to the higher source clock rate and lower memory coherence time of the quantum dot platform, while the other circumvents the need of writing photonic quantum states into the memories in a heralded, non-destructive fashion. The elementary building blocks and protocols can be connected in a modular form to construct a quantum repeater system that is potentially scalable to large distances.

https://doi.org/10.1002/qute.201900141