0000000000812823
AUTHOR
Lucas J Morales
Standards not that standard
There is a general assent on the key role of standards in Synthetic Biology. In two consecutive letters to this journal, suggestions on the assembly methods for the Registry of standard biological parts have been described. We fully agree with those authors on the need of a more flexible building strategy and we highlight in the present work two major functional challenges standardization efforts have to deal with: the need of both universal and orthogonal behaviors. We provide experimental data that clearly indicate that such engineering requirements should not be taken for granted in Synthetic Biology. Electronic supplementary material The online version of this article (doi:10.1186/s1303…
Engineering Bacteria to Form a Biofilm and Induce Clumping in Caenorhabditis elegans
Bacteria are needed for a vast range of biotechnological processes, which they carry out either as pure cultures or in association with other bacteria and/or fungi. The potential of bacteria as biofactories is hampered, though, by their limited mobility in solid or semisolid media such as agricultural or domestic waste. This work represents an attempt toward overcoming this limitation by associating bacterial biotechnological properties with the transport ability of the nematode Caenorhabditis elegans. We report here biofilm formation on C. elegans by engineered Escherichia coli expressing a Xhenorhabdus nematophila adhesion operon and induction of nematode social feeding behavior (clumping…
Towards light-mediated sensing of bacterial comfort
Abstract Bacterial comfort is central to biotechnological applications. Here, we report the characterization of different sensoring systems, the first step within a broader synthetic biology-inspired light-mediated strategy to determine Escherichia coli perception of environmental factors critical to bacterial performance. We did so by directly ‘asking’ bacterial cultures with light-encoded questions corresponding to the excitation wavelength of fluorescent proteins placed under the control of environment-sensitive promoters. We built four genetic constructions with fluorescent proteins responding to glucose, temperature, oxygen and nitrogen; and a fifth construction allowing UV-induced exp…