0000000000814670

AUTHOR

Rasmi Hajjar

0000-0002-9227-5364

Earth tomography with supernova neutrinos at future neutrino detectors

Earth neutrino tomography is a realistic possibility with current and future neutrino detectors, complementary to geophysics methods. The two main approaches are based on either partial absorption of the neutrino flux as it propagates through the Earth (at energies about a few TeV) or on coherent Earth matter effects affecting the neutrino oscillations pattern (at energies below a few tens of GeV). In this work, we consider the latter approach focusing on supernova neutrinos with tens of MeV. Whereas at GeV energies, Earth matter effects are driven by the atmospheric mass-squared difference, at energies below $\sim 100$~MeV, it is the solar mass-squared difference what controls them. Unlike…

research product

Neutrino mass ordering at DUNE: An extra ν bonus

We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being perational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti)neutrinos travel, provide the ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through the Earth. Crucially, muon capture by Argon provides excellent charge-tagging, allowing to disentangle the neutrino and antineutrino signature. This …

research product