6533b835fe1ef96bd129ea5e
RESEARCH PRODUCT
Neutrino mass ordering at DUNE: An extra ν bonus
S. GariazzoMichel SorelChristoph A. TernesRasmi HajjarOlga MenaMariam Tórtolasubject
PhysicsParticle physicsArgonTime projection chamber010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorHigh Energy Physics::Phenomenologychemistry.chemical_element01 natural sciences7. Clean energyHigh Energy Physics - ExperimentMuon captureHigh Energy Physics - Phenomenologychemistry13. Climate action0103 physical sciencesDeep Underground Neutrino ExperimentMuon neutrinoHigh Energy Physics::ExperimentNeutrino010306 general physicsBeam (structure)description
We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being perational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti)neutrinos travel, provide the ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through the Earth. Crucially, muon capture by Argon provides excellent charge-tagging, allowing to disentangle the neutrino and antineutrino signature. This is a critical extra benefit of having a Liquid Argon Time Projection Chamber as far detector, that could render a $4\sigma$ extraction of the mass ordering after ten years of exposure.
year | journal | country | edition | language |
---|---|---|---|---|
2019-11-21 | Physical Review D |