0000000000293411

AUTHOR

Christoph A. Ternes

showing 14 related works from this author

Sterile neutrinos with altered dispersion relations revisited

2020

In this paper we investigate neutrino oscillations with altered dispersion relations in the presence of sterile neutrinos. Modified dispersion relations represent an agnostic way to parameterize new physics. Models of this type have been suggested to explain global neutrino oscillation data, including deviations from the standard three-neutrino paradigm as observed by a few experiments. We show that, unfortunately, in this type of models new tensions arise turning them incompatible with global data.

PhysicsNuclear and High Energy PhysicsParticle physicsSterile neutrino010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyFOS: Physical sciences01 natural sciencesHigh Energy Physics - Experiment3. Good healthHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Dispersion relationBeyond Standard Model0103 physical scienceslcsh:QC770-798Neutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityHigh Energy Physics::Experiment010306 general physicsNeutrino oscillationJournal of High Energy Physics
researchProduct

Neutrinos, DUNE and the world best bound on CPT invariance

2017

CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effe…

Nuclear and High Energy PhysicsParticle physicsCPT symmetryFOS: Physical sciences01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsNeutrino oscillationQuantumPhysics010308 nuclear & particles physicsOscillationHigh Energy Physics::PhenomenologyParity (physics)Observablelcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNeutrinoModel buildinglcsh:Physics
researchProduct

Non-standard neutrino oscillations: perspective from unitarity triangles

2021

We formulate an alternative approach based on unitarity triangles to describe neutrino oscillations in presence of non-standard interactions (NSI). Using perturbation theory, we derive the expression for the oscillation probability in case of NSI and cast it in terms of the three independent parameters of the leptonic unitarity triangle (LUT). The form invariance of the probability expression (even in presence of new physics scenario as long as the mixing matrix is unitary) facilitates a neat geometric view of neutrino oscillations in terms of LUT. We examine the regime of validity of perturbative expansions in the NSI case and make comparisons with approximate expressions existing in liter…

PhysicsNuclear and High Energy PhysicsUnitarity010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyDegrees of freedom (physics and chemistry)FOS: Physical sciencesQC770-798Invariant (physics)01 natural sciencesHigh Energy Physics - PhenomenologyTheoretical physicsMatrix (mathematics)CP violationHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. RadioactivityBeyond Standard Model0103 physical sciencesNeutrino PhysicsPerturbation theory (quantum mechanics)Neutrino010306 general physicsNeutrino oscillationJournal of High Energy Physics
researchProduct

Neutrino oscillation probabilities through the looking glass

2019

In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsOscillationmedia_common.quotation_subjectFOS: Physical sciencesContext (language use)01 natural scienceslcsh:QC1-999Theoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesSimplicityAnalysis toolsNeutrino010306 general physicsNeutrino oscillationlcsh:Physicsmedia_common
researchProduct

CPT and CP, an entangled couple

2020

Even though it is undoubtedly very appealing to interpret the latest T2K results as evidence of CP violation, this claim assumes CPT conservation in the neutrino sector to an extent that has not been tested yet. As we will show, T2K results are not robust against a CPT-violating explanation. On the contrary, a CPT-violating CP-conserving scenario is in perfect agreement with current neutrino oscillation data. Therefore, to elucidate whether T2K results imply CP or CPT violation is of utter importance. We show that, even after combining with data from NO$\nu$A and from reactor experiments, no claims about CP violation can be made. Finally, we update the bounds on CPT violation in the neutrin…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)CP violationBeyond Standard Model0103 physical scienceslcsh:QC770-798CP violationNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrino010306 general physicsNeutrino oscillationJournal of High Energy Physics
researchProduct

Neutrino masses and their ordering: global data, priors and models

2018

We present a Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and CMB observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino ma…

AstrofísicaPhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyCosmic background radiationFOS: Physical sciencesAstronomy and AstrophysicsObservableParameter space01 natural sciencesPartícules (Física nuclear)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciencesPrior probabilityHigh Energy Physics::ExperimentNeutrino010306 general physicsNeutrino oscillationAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Neutrino mass ordering at DUNE: An extra ν bonus

2019

We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being perational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti)neutrinos travel, provide the ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through the Earth. Crucially, muon capture by Argon provides excellent charge-tagging, allowing to disentangle the neutrino and antineutrino signature. This …

PhysicsParticle physicsArgonTime projection chamber010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorHigh Energy Physics::Phenomenologychemistry.chemical_element01 natural sciences7. Clean energyHigh Energy Physics - ExperimentMuon captureHigh Energy Physics - Phenomenologychemistry13. Climate action0103 physical sciencesDeep Underground Neutrino ExperimentMuon neutrinoHigh Energy Physics::ExperimentNeutrino010306 general physicsBeam (structure)Physical Review D
researchProduct

Zooming in on neutrino oscillations with DUNE

2018

We examine the capabilities of the DUNE experiment as a probe of the neutrino mixing paradigm. Taking the current status of neutrino oscillations and the design specifications of DUNE, we determine the experiment's potential to probe the structure of neutrino mixing and CP violation. We focus on the poorly determined parameters $\theta_{23}$ and $\delta_{CP}$ and consider both two and seven years of run. We take various benchmarks as our true values, such as the current preferred values of $\theta_{23}$ and $\delta_{CP}$, as well as several theory-motivated choices. We determine quantitatively DUNE's potential to perform a precision measurement of $\theta_{23}$, as well as to test the CP vi…

PhysicsParticle physicsCurrent (mathematics)010308 nuclear & particles physicsFOS: Physical sciences01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino010306 general physicsNeutrino oscillationMixing (physics)
researchProduct

Status of neutrino oscillations 2018: 3 hint for normal mass ordering and improved CP sensitivity

2018

We present a new global fit of neutrino oscillation parameters within the simplest three-neutrino picture, including new data which appeared since our previous analysis [1]. In this update we include new long-baseline neutrino data involving the antineutrino channel in T2K, as well as new data in the neutrino channel, data from NOνA, as well as new reactor data, such as the Daya Bay 1230 days electron antineutrino disappearance spectrum data and the 1500 live days prompt spectrum from RENO, as well as new Double Chooz data. We also include atmospheric neutrino data from the IceCube DeepCore and ANTARES neutrino telescopes and from Super-Kamiokande. Finally, we also update our solar oscillat…

PhysicsNOνANuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsOscillationAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyCHOOZ01 natural scienceslcsh:QC1-999Neutrino detector0103 physical sciencesCP violationHigh Energy Physics::ExperimentNeutrino010306 general physicsNeutrino oscillationElectron neutrinolcsh:PhysicsPhysics Letters
researchProduct

2020 global reassessment of the neutrino oscillation picture

2021

We present an updated global fit of neutrino oscillation data in the simplest three-neutrino framework. In the present study we include up-to-date analyses from a number of experiments. Concerning the atmospheric and solar sectors, we give updated analyses of DeepCore and SNO data, respectively. We have also included the latest electron antineutrino data collected by the Daya Bay and RENO reactor experiments, and the long-baseline T2K and NO$\nu$A measurements. These new analyses result in more accurate measurements of $\theta_{13}$, $\theta_{12}$, $\Delta m_{21}^2$ and $|\Delta m_{31}^2|$. The best fit value for the atmospheric angle $\theta_{23}$ lies in the second octant, but first octan…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)CUOREDouble beta decay0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNeutrino oscillationNOνAPhysicsSudbury Neutrino Observatory010308 nuclear & particles physicsHigh Energy Physics - Phenomenology13. Climate actionBeyond Standard Modellcsh:QC770-798CP violationHigh Energy Physics::ExperimentNeutrinoElectron neutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Constraining the invisible neutrino decay with KM3NeT-ORCA

2019

Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters $…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoPhysics::Instrumentation and DetectorsPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaNeutrino masses and mixingScalar (mathematics)FOS: Physical sciences01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsNeutrino oscillationNeutrino decayMajoronPhysics010308 nuclear & particles physicsOscillationNeutrino oscillationsHigh Energy Physics::Phenomenologylcsh:QC1-999High Energy Physics - PhenomenologyKM3NeTHigh Energy Physics::ExperimentNeutrinoNeutrino telescopeslcsh:PhysicsPhysics Letters
researchProduct

Exploring the intrinsic Lorentz-violating parameters at DUNE

2018

Neutrinos can push our search for new physics to a whole new level. What makes them so hard to be detected, what allows them to travel humongous distances without being stopped or deflected allows to amplify Planck suppressed effects (or effects of comparable size) to a level that we can measure or bound in DUNE. In this work we analyze the sensitivity of DUNE to CPT and Lorentz-violating interactions in a framework that allows a straightforward extrapolation of the bounds obtained to any phenomenological modification of the dispersion relation of neutrinos.

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsPhysics beyond the Standard ModelLorentz transformationExtrapolationFOS: Physical sciences01 natural sciencesMeasure (mathematics)Partícules (Física nuclear)lcsh:QC1-999High Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Dispersion relation0103 physical sciencessymbolsSensitivity (control systems)NeutrinoPlanck010306 general physicslcsh:PhysicsPhysics Letters B
researchProduct

New physics vs new paradigms: distinguishing CPT violation from NSI

2019

Our way of describing Nature is based on local relativistic quantum field theories, and then CPT symmetry, a natural consequence of Lorentz invariance, locality and hermiticity of the Hamiltonian, is one of the few if not the only prediction that all of them share. Therefore, testing CPT invariance does not test a particular model but the whole paradigm. Current and future long baseline experiments will assess the status of CPT in the neutrino sector at an unprecedented level and thus its distinction from similar experimental signatures arising from non-standard interactions is imperative. Whether the whole paradigm is at stake or just the standard model of neutrinos crucially depends on th…

Physics::General PhysicsPhysics and Astronomy (miscellaneous)CPT symmetryPhysics beyond the Standard ModelFOS: Physical scienceslcsh:AstrophysicsLorentz covariance01 natural sciencesPartícules (Física nuclear)High Energy Physics - Experimentsymbols.namesakeTheoretical physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Violació CP (Física nuclear)lcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityQuantum field theory010306 general physicsEngineering (miscellaneous)Physics010308 nuclear & particles physicsLocalityHigh Energy Physics::PhenomenologyHigh Energy Physics - Phenomenologysymbolslcsh:QC770-798High Energy Physics::ExperimentNeutrinoHamiltonian (quantum mechanics)
researchProduct

Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment

2018

Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters $\theta_{23}$ and $\delta_{\text{CP}}$. We present the expected improved sensitivity on these parameters for different assumptions.

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsOscillationHigh Energy Physics::PhenomenologyFOS: Physical sciences01 natural scienceslcsh:QC1-999Partícules (Física nuclear)High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::ExperimentSensitivity (control systems)010306 general physicsNeutrino oscillationlcsh:PhysicsFlavorLepton
researchProduct