6533b862fe1ef96bd12c6484
RESEARCH PRODUCT
Constraining the invisible neutrino decay with KM3NeT-ORCA
P. F. De SalasP. F. De SalasSergio PastorChristoph A. TernesMariam TórtolaT. Thakoresubject
Nuclear and High Energy PhysicsParticle physicsSterile neutrinoPhysics::Instrumentation and DetectorsPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaNeutrino masses and mixingScalar (mathematics)FOS: Physical sciences01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsNeutrino oscillationNeutrino decayMajoronPhysics010308 nuclear & particles physicsOscillationNeutrino oscillationsHigh Energy Physics::Phenomenologylcsh:QC1-999High Energy Physics - PhenomenologyKM3NeTHigh Energy Physics::ExperimentNeutrinoNeutrino telescopeslcsh:Physicsdescription
Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters $\sin^2\theta_{23}$ and $\Delta m_{31}^2$, as well as the sensitivity to the neutrino mass ordering.
year | journal | country | edition | language |
---|---|---|---|---|
2019-02-01 | Physics Letters |