0000000000815445

AUTHOR

Wim Wuyts

0000-0002-4349-9038

showing 2 related works from this author

Haploinsufficiency of the NOTCH1 receptor as a cause of Adams-Oliver syndrome with variable cardiac anomalies

2015

Background— Adams–Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. Methods and Results— Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregat…

MaleModels MolecularProbandreceptorGene ExpressionHaploinsufficiencyNOTCH1Ectodermal DysplasiaMissense mutationExomeReceptor Notch1ChildExomeGenetics (clinical)GeneticsReverse Transcriptase Polymerase Chain ReactionAutosomal dominant traitMiddle AgedPedigreeembryonic structuresheart defectscardiovascular systemFemaleCardiology and Cardiovascular MedicineHaploinsufficiencySignal TransductionAdultHeart Defects CongenitalAdolescentLimb Deformities CongenitalNotch signaling pathwayBiologyArticleYoung AdultAdams-Oliver syndromeGeneticsmedicineHumansGenetic Predisposition to DiseaseGeneFamily HealthBase SequencecongenitalAdams-Oliver syndrome; genetics; haploinsufficiency; heart defects; congenital; receptor; NOTCH1; Cardiology and Cardiovascular Medicine; Genetics (clinical); GeneticsSequence Analysis DNAmedicine.diseaseProtein Structure TertiaryScalp DermatosesHuman medicineAdams–Oliver syndromeCirculation. Cardiovascular genetics
researchProduct

A novel DFNB1 deletion allele supports the existence of a distant cis-regulatory region that controls GJB2 and GJB6 expression

2010

Contains fulltext : 87760_1.pdf (author's version ) (Open Access) Contains fulltext : 87760_2.pdf (Publisher’s version ) (Closed access) Eleven affected members of a large German-American family segregating recessively inherited, congenital, non-syndromic sensorineural hearing loss (SNHL) were found to be homozygous for the common 35delG mutation of GJB2, the gene encoding the gap junction protein Connexin 26. Surprisingly, four additional family members with bilateral profound SNHL carried only a single 35delG mutation. Previously, we demonstrated reduced expression of both GJB2 and GJB6 mRNA from the allele carried in trans with that bearing the 35delG mutation in these four persons. Usin…

MaleGenetics and epigenetic pathways of disease [NCMLS 6][SDV]Life Sciences [q-bio]PenetranceMESH: Base SequenceRegulatory Sequences Nucleic Acidsensorineural hearing lossConnexinsMESH: GenotypeMESH: Hearing Loss Sensorineural/diagnosisMESH: PenetranceGenotypeCopy-number variationGenetics (clinical)Sequence DeletionGeneticsComparative Genomic Hybridization0303 health sciencesMESH: Genetic TestingMESH: Gene Expression Regulation*030305 genetics & heredityPenetranceGJB2PedigreeConnexin 26MESH: Sequence Deletion*MESH: Hearing Loss Sensorineural/geneticsFemaleChromosome DeletionFunctional Neurogenomics [DCN 2]GJB6GenotypeMESH: PedigreeMESH: Chromosome DeletionHearing Loss SensorineuralMolecular Sequence Dataconnexin 26connexin 30DFNB1gene expression regulationGJB2GJB6sensorineural hearing losssequence deletionBiologyMESH: Connexin 30MESH: Connexins/genetics*MESH: Sequence Homology Nucleic AcidArticleGenomic disorders and inherited multi-system disorders [IGMD 3]03 medical and health sciencesMonoallelic MutationGJB6MESH: Connexin 26Sequence Homology Nucleic AcidConnexin 30otorhinolaryngologic diseasesGeneticsHumansGenetic TestingAlleleGeneMESH: Regulatory Sequences Nucleic Acid/genetics*AllelesDFNB1030304 developmental biologyFamily HealthMESH: HumansMESH: Molecular Sequence DataBase SequenceChromosomes Human Pair 13MESH: AllelesBreakpointMESH: MaleMESH: Comparative Genomic HybridizationGene Expression RegulationMESH: Family Healthbiology.proteinHuman medicineMESH: Chromosomes Human Pair 13/geneticsMESH: FemaleClinical Genetics
researchProduct