6533b835fe1ef96bd129ec35

RESEARCH PRODUCT

Haploinsufficiency of the NOTCH1 receptor as a cause of Adams-Oliver syndrome with variable cardiac anomalies

Maja SukaloWim WuytsShelagh JossClaire S. CollinsonLuitgard Graul-neumannLeonardo SalviatiMaria Cristina DigilioRajiv D. MachadoMartin ZenkerRichard C. TrembathJohn TolmieFrancesco BrancatiLaura SouthgateAnastasios S.v. KarountzosDeborah RuddyEmmanuel JacqueminWiltrud CoerdtBruno DallapiccolaEdward J. TaylorKatie Snape

subject

MaleModels MolecularProbandreceptorGene ExpressionHaploinsufficiencyNOTCH1Ectodermal DysplasiaMissense mutationExomeReceptor Notch1ChildExomeGenetics (clinical)GeneticsReverse Transcriptase Polymerase Chain ReactionAutosomal dominant traitMiddle AgedPedigreeembryonic structuresheart defectscardiovascular systemFemaleCardiology and Cardiovascular MedicineHaploinsufficiencySignal TransductionAdultHeart Defects CongenitalAdolescentLimb Deformities CongenitalNotch signaling pathwayBiologyArticleYoung AdultAdams-Oliver syndromeGeneticsmedicineHumansGenetic Predisposition to DiseaseGeneFamily HealthBase SequencecongenitalAdams-Oliver syndrome; genetics; haploinsufficiency; heart defects; congenital; receptor; NOTCH1; Cardiology and Cardiovascular Medicine; Genetics (clinical); GeneticsSequence Analysis DNAmedicine.diseaseProtein Structure TertiaryScalp DermatosesHuman medicineAdams–Oliver syndrome

description

Background— Adams–Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. Methods and Results— Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we detected 8 additional unique NOTCH1 mutations, including 3 de novo amino acid substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% (8/17) of NOTCH1 -positive probands and affected family members. In leukocyte-derived RNA from subjects harboring NOTCH1 extracellular domain mutations, we observed significant reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was associated with downregulation of the Notch target genes HEY1 and HES1 , indicating that NOTCH1 -related AOS arises through dysregulation of the Notch signaling pathway. Conclusions— These findings highlight a key role for NOTCH1 across a range of developmental anomalies that include cardiac defects and implicate NOTCH1 haploinsufficiency as a likely molecular mechanism for this group of disorders.

10.1161/circgenetics.115.001086https://hdl.handle.net/10067/1278100151162165141