0000000000822142

AUTHOR

Francesco Bertolini

showing 3 related works from this author

Fasting renders immunotherapy effective against low-immunogenic breast cancer while reducing side effects

2022

Immunotherapy is improving the prognosis and survival of cancer patients, but despite encouraging out-comes in different cancers, the majority of tumors are resistant to it, and the immunotherapy combinations are often accompanied by severe side effects. Here, we show that a periodic fasting-mimicking diet (FMD) can act on the tumor microenvironment and increase the efficacy of immunotherapy (anti-PD-L1 and anti-OX40) against the poorly immunogenic triple-negative breast tumors (TNBCs) by expanding early exhausted effector T cells, switching the cancer metabolism from glycolytic to respiratory, and reducing collagen depo-sition. Furthermore, FMD reduces the occurrence of immune-related adve…

Tumor MicroenvironmentHumansTriple Negative Breast NeoplasmsFastingImmunotherapySettore MED/08 - Anatomia PatologicaGlycolysisnutrition triple-negative breast cancer CP: Cancer CP: Immunology fasting fasting-mimicking diet immunotherapy inflammationB7-H1 AntigenGeneral Biochemistry Genetics and Molecular BiologyCell Reports
researchProduct

Blastic plasmacytoid dendritic cell neoplasm: genomics mark epigenetic dysregulation as a primary therapeutic target

2018

Blastic Plasmacytoid Dendritic Cell Neoplasm is a rare and aggressive hematological malignancy currently lacking an effective therapy. To possibly identify genetic alterations useful for a new treatment design, we analyzed by whole-exome sequencing fourteen Blastic Plasmacytoid Dendritic Cell Neoplasm patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program as the most significantly undermined (P<.0001). In particular, twenty-five epigenetic-modifiers were found mutated (e.g., ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of …

Acute Myeloid LeukemiaBlastic plasmacytoid dendritic cell neoplasm epigenetic mutationsSkin NeoplasmsAzacitidineDecitabinePlasmacytoid dendritic cellGene mutationBiologyDecitabineBPDCNArticleEpigenesis Genetic03 medical and health sciences0302 clinical medicineHistone methylation5’-Azacytidine; Acute Myeloid Leukemia; BPDCN; Decitabine; WESmedicineHumansEpigeneticsExome sequencingRegulation of gene expressionMyeloproliferative DisordersDendritic CellsGenomicsHematology5 -AzacytidineMyeloid Neoplasms5’-AzacytidineCancer researchWES030215 immunologymedicine.drugHaematologica
researchProduct

Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium

2012

Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144-), triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45-) capable of functioning as haemogenic endothelium. These cells, proven to give…

CD31MouseCellular differentiationMESH: HematopoiesisAntigens CD34murine hepatocytesMESH: CadherinsMESH: HepatocytesMice0302 clinical medicineMolecular Cell BiologyHematopoiesiHepatocyteMESH: Animalsendothelial lineageMESH: Antigens CDCells Cultured0303 health sciencesMultidisciplinaryMESH: Culture Media ConditionedStem CellsMedicine (all)QMESH: Infant NewbornRMESH: HemangioblastsAntigens CD45Cell DifferentiationAnimal ModelsCadherinsFetal BloodCell biologyAdult Stem CellsHaematopoiesisPhenotypeconditioned mediummedicine.anatomical_structureCord bloodMedicineHemangioblastCD146Cellular TypesAnimals; Antigens CD; Antigens CD34; Antigens CD45; Cadherins; Cell Adhesion; Cell Differentiation; Cell Shape; Cells Cultured; Culture Media Conditioned; Fetal Blood; Hemangioblasts; Hematopoiesis; Hepatocytes; Humans; Immunophenotyping; Infant Newborn; Mice; Phenotype; Agricultural and Biological Sciences (all); Biochemistry Genetics and Molecular Biology (all); Medicine (all)Research ArticleHumanMESH: Cells Culturedendothelial lineage; murine hepatocytes; conditioned mediumMESH: Cell DifferentiationMESH: ImmunophenotypingEndotheliumHemangioblastsScienceMESH: Antigens CD45[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyMESH: PhenotypeImmunophenotypingMESH: Cell Adhesion03 medical and health sciencesModel OrganismsAntigens CDCell AdhesionmedicineAnimalsHumansMESH: Cell ShapeMESH: Fetal BloodProgenitor cellBiologyCell ShapeMESH: Mice030304 developmental biologyBiochemistry Genetics and Molecular Biology (all)MESH: HumansAnimalInfant NewbornMESH: Antigens CD34Hematopoietic Stem CellsHemangioblastHematopoiesisAgricultural and Biological Sciences (all)Culture Media ConditionedImmunologyHepatocytesCadherinLeukocyte Common Antigens030217 neurology & neurosurgeryDevelopmental BiologyPLoS ONE
researchProduct