0000000000822818

AUTHOR

R. Wyss

Gamma-ray spectroscopy of191,193Bi

Very neutron-deficient Bi-191,Bi-193 nuclei have been studied at the Department of Physics, University of Jyvaskyla, Finland (JYFL) employing the Jurosphere II Ge-detector array coupled to the gas-filled recoil separator RITU and different tagging techniques. For the first time in heavy odd-mass nuclei, a collective band (oblate) is identified above the 2p-1h (1/2(+)) proton intruder state in Bi-191. In both Bi-191,Bi-193, a band based on isomeric 13/2(+) state has been observed and oblate deformation for this state has been deduced. ispartof: Acta Physica Polonica B vol:32 issue:3 pages:1019-1023 ispartof: location:POLAND, ZAKOPANE status: published

research product

Alignment processes in 119Cs, 121Cs and 123Cs

Rotational band structures have been observed in the odd-A Cs isotopes 119Cs, 121Cs and 123Cs. The previously known bands have been extended to higher spin values and several new bands have been es ...

research product

Fine structure in a alpha decay of 188, 192Po

The α decay of 188,192Po has been reexamined in order to probe the 0+ states in the daughter nuclei 184,188Pb that can be associated with coexisting spherical, oblate, and∕or prolate configurations. Improved values were measured for the excitation energy and the feeding α-decay intensity of the 0+2state in 184,188Pb and conflicting results on the 0+3 state in 188Pb were clarified. All known cases of fine structure in the α decay of the even-even Po nuclei are reviewed. The reduced α-decay width systematics combined with potential-energy-surface calculations confirm the onset of deformation in the ground state of the polonium nuclei around the neutron midshell. An isomeric state with a half-…

research product

Identification of excited states in 107,52Te55

Excited states in the extremely neutron-deficient nucleus 107Te have been identified from two separate experiments using the recoil-decay tagging technique. Two connected structures were observed on the basis of γγ-coincidence relations and tentatively assigned as built on the mixed-parentage νg7/2d5/2 and νh11/2 intruder configurations. The observed structures were compared with large-scale shell-model calculations and total Routhian surface calculations. Collective behavior was discovered to persist in the νh11/2 band of 107Te which highlights the shape-polarizing effect of a single valence neutron occupying the h11/2 intruder orbit as the N=50 shell closure is approached. peerReviewed

research product

Evidence for enhanced collectivity in Te-I-Xe nuclei near the N = Z = 50 double shell closure

Gamma‐ray transitions have been identified for the first time in the extremely neutron‐deficient Tz = 1 nuclide 110Xe and the energies of the three lowest excited states in the ground‐state band have been deduced. A level scheme has also been constructed for the proton‐unbound, Tz = 3/2 nuclide 109I, exhibiting band structures built on g7/2 and h11/2 states in a weakly deformed, triaxial nucleus. In addition, a third band is proposed to be built on a g7/2 orbital coupled to an octupole‐vibrational phonon of the 108Te core. The results were obtained in a recoil‐decay tagging experiment using the 58Ni(54Fe,2n/p2n) reaction at a beam energy of 195 MeV. The experiment was performed using the hi…

research product

Evidence for octupole collectivity in 172Pt

Excited states in the extremely neutron-deficient nucleus 172Pt were populated via 96Ru(78Kr,2p) and 92Mo(83Kr,3n) reactions. The level scheme has been extended up to an excitation energy of  ~ 5 MeV and tentative spin-parity assignments up to Iπ = 18+. Linear polarization and angular distribution measurements were used to determine the electromagnetic E1 character of the dipole transitions connecting the positive-parity ground-state band with an excited side-band, firmly establishing it as a negative-parity band. The lowest member of this negative-parity structure was firmly assigned spin-parity 3-. In addition, we observed an E3 transition from this 3- state to the ground state, providing…

research product

High-spin intruder band in $^{107}$In

High-spin states in the neutron deficient nucleus $^{107}$In were studied via the $^{58}$Ni($^{52}$Cr, 3p) reaction. In-beam $\gamma$ rays were measured using the JUROGAM detector array. A rotational cascade consisting of ten $\gamma$-ray transitions which decays to the 19/2$^{+}$ level at 2.002 MeV was observed. The band exhibits the features typical for smooth terminating bands which also appear in rotational bands of heavier nuclei in the A$\sim$100 region. The results are compared with Total Routhian Surface and Cranked Nilsson-Strutinsky calculations.

research product

The influence of quasineutron configurations on 161Ta and nearby odd-A Nuclei

Several strongly coupled bands in the neutron‐deficient nucleus 161Ta have been identified and quasiparticle configuration assignments have been made on the basis of rotational alignments and cranked shell model calculations. The level scheme elucidated for 161Ta highlights the competition between the ν(h9/2) and ν(i13/2) orbitals to form the yrast spectrum. The band structures in 161Ta also provide new insights into the structural features of other heavy odd‐A nuclei populated with much lower reaction cross sections in this region at the proton drip line.

research product