0000000000827735
AUTHOR
J. X. Li
Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport
The production and migration of carbon interstitials in carbon nanotubes under electron irradiation is studied experimentally and theoretically. It is shown that the threshold for displacing carbon atoms and the defect production rate strongly depend on the diameter of the nanotubes. Multiwalled nanotubes shrink by a loss of atoms and by diffusion of interstitials through the inner hollow in the axial direction. Thus, experimental evidence is given that nanotubes can act as nanoscale pipes for the transport of atoms.
Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality
As recent experiments demonstrate, the inner shells of multiwalled carbon nanotubes are more sensitive to electron irradiation than the outer shells. To understand the origin of such counterintuitive behavior, we employ a density-functional-theory based tight-binding method and calculate the displacement threshold energies for carbon atoms in single-walled nanotubes with different diameters and chiralities. We show that the displacement energy and the defect production rate strongly depend on the diameter of the nanotube and its chirality, with the displacement energy being lower, but saturating towards the value for graphite when the tube diameter increases. This implies that the threshold…