0000000000854972

AUTHOR

Gulsen Taskin

showing 1 related works from this author

Manifold Learning with High Dimensional Model Representations

2020

Manifold learning methods are very efficient methods for hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high input dimensional space and the (typically low) latent space is linear. This is a particularly strong assumption, especially when dealing with hyperspectral images due to the well-known nonlinear nature of the data. To address this problem, a manifold learning method based on High Dimensional Model Representation (HDMR) is proposed, which enables to present a nonlinear embedding function to p…

Computer sciencebusiness.industryNonlinear dimensionality reductionHyperspectral imaging020206 networking & telecommunicationsPattern recognition02 engineering and technologyFunction (mathematics)ManifoldNonlinear systemKernel (linear algebra)Transformation (function)0202 electrical engineering electronic engineering information engineeringEmbedding020201 artificial intelligence & image processingArtificial intelligencebusinessIGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
researchProduct