6533b837fe1ef96bd12a260b

RESEARCH PRODUCT

Manifold Learning with High Dimensional Model Representations

Gustau Camps-vallsGulsen Taskin

subject

Computer sciencebusiness.industryNonlinear dimensionality reductionHyperspectral imaging020206 networking & telecommunicationsPattern recognition02 engineering and technologyFunction (mathematics)ManifoldNonlinear systemKernel (linear algebra)Transformation (function)0202 electrical engineering electronic engineering information engineeringEmbedding020201 artificial intelligence & image processingArtificial intelligencebusiness

description

Manifold learning methods are very efficient methods for hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high input dimensional space and the (typically low) latent space is linear. This is a particularly strong assumption, especially when dealing with hyperspectral images due to the well-known nonlinear nature of the data. To address this problem, a manifold learning method based on High Dimensional Model Representation (HDMR) is proposed, which enables to present a nonlinear embedding function to project out-of-sample samples into the latent space. The proposed method is compared to its linear counterparts and achieves promising performance in terms of classification accuracy of hyperspectral images.

https://doi.org/10.1109/igarss39084.2020.9324215