0000000000855841
AUTHOR
M. Arjona
Influence of light polarization on the dynamics of optically pumped lasers.
The dynamic behavior of a coherently pumped ring laser with a homogeneously broadened four-level medium is analyzed theoretically, considering linearly polarized pump and generated laser beams. The laser is shown to be much more stable when these polarizations are parallel than when they are orthogonal. In the latter case the instability pump threshold can be as low as four times the first laser threshold, and the laser dynamics shows Lorenz-type features.
Progress in Modelling Coherently Pumped Far-Infrared Laser Dynamics
Coherently pumped lasers (CPL) operating in the far-infrared spectral region shown a wealth of instabilities1, including a behavior remarkably similar2,3 with the predictions of the paradigmatic Lorenz-Haken model of a single-mode homogeneously broadened laser4,5. The qualitative agreement; between theory and experiments2,3 was rather surprising, for the model4,5 refers to a two-level system whereas the CPL operate on a three-level scheme, where the pumping and lasing transitions share a common upper level. Dupertuis et al.6 have identified conditions for the mathematical reduction of the CPL equations to the Lorenz-Haken equations4, but these conditions were not all fulfilled in the experi…