0000000000858872

AUTHOR

Erwin F. Wagner

0000-0001-7872-0196

showing 4 related works from this author

JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun

2003

The AP-1 transcription factor c-Jun is a prototypical nuclear effector of the JNK signal transduction pathway. The integrity of JNK phosphorylation sites at serines 63/73 and at threonines 91/93 in c-Jun is essential for signal-dependent target gene activation. We show that c-Jun phosphorylation mediates dissociation of an inhibitory complex, which is associated with histone deacetylase 3 (HDAC3). The subsequent events that ultimately cause increased mRNA synthesis are independent of c-Jun phosphorylation and its interaction with JNK. These findings provide an 'activation by de-repression' model as an explanation for the stimulatory function of JNK on c-Jun.

ThreonineTranscriptional ActivationTranscription GeneticMAP Kinase Kinase 4Proto-Oncogene Proteins c-junRecombinant Fusion ProteinsMitogen-activated protein kinase kinaseHistone DeacetylasesGeneral Biochemistry Genetics and Molecular BiologyCell LinePhosphorylation cascadeMiceSuppression GeneticGenes ReporterSerineAnimalsHumansRNA MessengerPhosphorylationMolecular BiologyTranscription factorSequence DeletionMitogen-Activated Protein Kinase KinasesGeneral Immunology and MicrobiologybiologyGeneral Neurosciencec-junJNK Mitogen-Activated Protein KinasesArticles3T3 CellsHDAC3Molecular biologyProtein Structure TertiaryMitogen-activated protein kinaseMutationMutagenesis Site-Directedbiology.proteinPhosphorylationSignal transductionProtein BindingThe EMBO Journal
researchProduct

Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

2015

Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ?accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. "Regulated cell death" (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to…

Biochemical Manifestations of Cell DeathISCHEMIA-REPERFUSION INJURYApoptosisReviewTransduction (genetics)0302 clinical medicineCASPASE INHIBITION SWITCHESAnimals; Humans; Terminology as Topic; Apoptosis; Signal Transduction610 Medicine & healthCaspaseTUMOR-NECROSIS-FACTOR0303 health sciencesSettore BIO/17biologySettore BIO/11NeurodegenerationSettore BIO/13APOPTOSIS3. Good healthMedicina Básicacell death030220 oncology & carcinogenesiscell death; Morphologic Aspects of Cell Death; Biochemical Manifestations of Cell DeathSignal transductionDOMAIN-LIKE PROTEINIntracellularHumanSignal TransductionNecroptosiCYTOCHROME-C RELEASEOUTER-MEMBRANE PERMEABILIZATIONProgrammed cell deathCIENCIAS MÉDICAS Y DE LA SALUDSettore BIO/06Inmunología610 Medicine & healthCELL DEATHNOQ-VD-OPH03 medical and health sciencesSettore MED/04 - PATOLOGIA GENERALEddc:570Terminology as TopicAPOPTOSIS-INDUCING FACTORMIXED LINEAGE KINASEmedicineAnimalsHumansAnimals; Humans; Terminology as Topic; Apoptosis; Signal Transduction; Molecular Biology; Cell BiologyMorphologic Aspects of Cell DeathSettore BIO/10Molecular Biology030304 developmental biologyAnimalCell growthApoptosiBiology and Life SciencesCell Biologymedicine.diseaseMITOCHONDRIAL PERMEABILITY TRANSITIONApoptosisImmunologybiology.proteinNeuroscienceCell death and differentiation
researchProduct

Epidermal IL-17A leads to bone loss through inhibition of osteoblast differentiation

2012

The AP-1 transcription factor family is a central regulator of skin and bone homeostasis. We have previously shown that specific deletion of JunB/AP-1 in epidermis (JunBmice) results in skin inflammation,myeloproliferative disease, lupus-like disease and osteopenia. While upregulation of serum IL-6 and G-CSF are observed in this model, genetic deletion of these cytokines does not rescue osteopenia in JunB mice. Thus, we carried out a screen for other cytokines that are regulated by the loss of JunB in the epidermis. We have identified IL-17A as a cytokine expressed in JunB epidermis in vivo, and hypothesize that IL-17A leads to osteopenia in JunBmice. To test this,we carried out osteoblast …

HistologyEpidermis (botany)PhysiologyJUNBEndocrinology Diabetes and Metabolismmedicine.medical_treatmentInflammationOsteoblastBiologyCytokinemedicine.anatomical_structureDownregulation and upregulationOsteoclastmedicineCancer researchCytotoxic T cellmedicine.symptomBone
researchProduct

Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts

2016

Item does not contain fulltext Inflammation has important roles in tissue regeneration, autoimmunity, and cancer. Different inflammatory stimuli can lead to bone loss by mechanisms that are not well understood. We show that skin inflammation induces bone loss in mice and humans. In psoriasis, one of the prototypic IL-17A-mediated inflammatory human skin diseases, low bone formation and bone loss correlated with increased serum IL-17A levels. Similarly, in two mouse models with chronic IL-17A-mediated skin inflammation,K14-IL17A(ind)andJunB(Deltaep), strong inhibition of bone formation was observed, different from classical inflammatory bone loss where osteoclast activation leads to bone deg…

0301 basic medicineMaleInflammationModels BiologicalOsteocytesBone resorptionEpithelium03 medical and health sciences0302 clinical medicineOsteoclastOsteogenesismedicineAnimalsHumansPsoriasisCell LineageBone ResorptionWnt Signaling PathwaySkin030203 arthritis & rheumatologyInflammationOsteoblastsChemistryInnate lymphoid cellInterleukin-17Wnt signaling pathwayOsteoblastGeneral MedicineMiddle AgedMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureGene Expression RegulationOsteocyteImmunologyChronic DiseaseCancer researchFemaleInterleukin 17medicine.symptomInflammatory diseases Radboud Institute for Molecular Life Sciences [Radboudumc 5]Science Translational Medicine
researchProduct