0000000000874917

AUTHOR

Jürgen Kopitz

The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration

The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic …

research product

Splice donor site mutation in the lysosomal neuraminidase gene causing exon skipping and complete loss of enzyme activity in a sialidosis patient.

Sialidosis is a lysosomal storage disease caused by the deficiency of K K-N-acetylneuraminidase (NEU1; sialidase), the key enzyme for the intralysosomal catabolism of sialylated glycoconjugates. We have identified a homozygous transversion in the last intron (IVSE +1 Gs C) in neu1 of a sialidosis patient. Sequencing of the truncated cDNA revealed an alternatively spliced neu1 transcript which lacks the complete sequence of exon 5. Skipping of exon 5 leads to a frameshift and results in a premature termination codon. This is the first description of an intronic point mutation causing a complete deficiency of the lysosomal neuraminidase activity. fl 2001 Federation of Euro- pean Biochemical S…

research product

Distinct Activities of Glycolytic Enzymes Identify Chronic Lymphocytic Leukemia Patients with a more Aggressive Course and Resistance to Chemo-Immunotherapy.

A higher capacity to grow under hypoxic conditions can lead to a more aggressive behavior of tumor cells. Determining tumor activity under hypoxia may identify chronic lymphocytic leukemia (CLL) with aggressive clinical course and predict response to chemo-immunotherapy (CIT). A metabolic score was generated by determining pyruvate kinase and lactate dehydrogenase, key enzymes of glycolysis, ex vivo in primary CLL samples under normoxic and hypoxic conditions. This score was further correlated with clinical endpoints and response to CIT in 96 CLL patients. 45 patients were classified as metabolic high risk (HR), 51 as low risk (LR). Treatment-free survival (TFS) was significantly shorter in…

research product