0000000000876453
AUTHOR
Yue Qiu
Spatial source phase : A new feature for identifying spatial differences based on complex-valued resting-state fMRI data
Spatial source phase, the phase information of spatial maps extracted from functional magnetic resonance imaging (fMRI) data by data‐driven methods such as independent component analysis (ICA), has rarely been studied. While the observed phase has been shown to convey unique brain information, the role of spatial source phase in representing the intrinsic activity of the brain is yet not clear. This study explores the spatial source phase for identifying spatial differences between patients with schizophrenia (SZs) and healthy controls (HCs) using complex‐valued resting‐state fMRI data from 82 individuals. ICA is first applied to preprocess fMRI data, and post‐ICA phase de‐ambiguity and den…
Classification of Schizophrenia Patients and Healthy Controls Using ICA of Complex-Valued fMRI Data and Convolutional Neural Networks
Deep learning has contributed greatly to functional magnetic resonance imaging (fMRI) analysis, however, spatial maps derived from fMRI data by independent component analysis (ICA), as promising biomarkers, have rarely been directly used to perform individualized diagnosis. As such, this study proposes a novel framework combining ICA and convolutional neural network (CNN) for classifying schizophrenia patients (SZs) and healthy controls (HCs). ICA is first used to obtain components of interest which have been previously implicated in schizophrenia. Functionally informative slices of these components are then selected and labelled. CNN is finally employed to learn hierarchical diagnostic fea…