6533b839fe1ef96bd12a58fa

RESEARCH PRODUCT

Classification of Schizophrenia Patients and Healthy Controls Using ICA of Complex-Valued fMRI Data and Convolutional Neural Networks

Xiao-feng GongYue QiuLi Dan KuangQiu-hua LinWen Da ZhaoVince D. CalhounVince D. CalhounFengyu CongFengyu Cong

subject

medicine.diagnostic_testbusiness.industryComputer scienceDeep learningSchizophrenia (object-oriented programming)05 social sciencesPattern recognitionmedicine.diseaseAuditory cortexConvolutional neural networkIndependent component analysis050105 experimental psychology03 medical and health sciences0302 clinical medicineSchizophreniamedicine0501 psychology and cognitive sciencesArtificial intelligencebusinessFunctional magnetic resonance imaging030217 neurology & neurosurgeryDefault mode networkDiagnosis of schizophrenia

description

Deep learning has contributed greatly to functional magnetic resonance imaging (fMRI) analysis, however, spatial maps derived from fMRI data by independent component analysis (ICA), as promising biomarkers, have rarely been directly used to perform individualized diagnosis. As such, this study proposes a novel framework combining ICA and convolutional neural network (CNN) for classifying schizophrenia patients (SZs) and healthy controls (HCs). ICA is first used to obtain components of interest which have been previously implicated in schizophrenia. Functionally informative slices of these components are then selected and labelled. CNN is finally employed to learn hierarchical diagnostic features from the slices and classify SZs and HCs. We use complex-valued fMRI data instead of magnitude fMRI data, in order to obtain more contiguous spatial activations. Spatial maps estimated by ICA with multiple model orders are employed for data argumentation to enhance the training process. Evaluations are performed using 82 resting-state complex-valued fMRI datasets including 42 SZs and 40 HCs. The proposed method shows an average accuracy of 72.65% in the default mode network and 78.34% in the auditory cortex for slice-level classification. When performing subject-level classification based on majority voting, the result shows 91.32% and 98.75% average accuracy, highlighting the potential of the proposed method for diagnosis of schizophrenia and other neurological diseases.

https://doi.org/10.1007/978-3-030-22808-8_53