0000000000888517

AUTHOR

Katja Rönkä

Can multiple-model mimicry explain warning signal polymorphism in the wood tiger moth, Arctia plantaginis (Lepidoptera: Erebidae)?

research product

Putting Parasemia in its phylogenetic place: a molecular analysis of the subtribe Arctiina (Lepidoptera)

Despite being popular among amateur and professional lepidopterologists and posing great opportunities for evolutionary research, the phylogenetic relationships of tiger moths (Erebidae: Arctiinae) are not well resolved. Here we provide the first phylogenetic hypothesis for the subtribe Arctiina with the basic aim of clarifying the phylogenetic position of the Wood Tiger Moth Parasemia plantaginis Hübner, a model species in evolutionary ecology. We sampled 89 species in 52 genera within Arctiina s.l., 11 species of Callimorphina and two outgroup species. We sequenced up to seven nuclear genes (CAD, GAPDH, IDH, MDH, Ef1𝛼, RpS5, Wingless) and one mitochondrial gene (COI) including the barcod…

research product

Evolution of signal diversity: predator-prey interactions and the maintenance of warning colour polymorphism in the wood tiger moth Arctia plantaginis

Aposematic organisms avoid predation by advertising defences with warning signals. The theory of aposematism predicts warning signal uniformity, yet variation in warning coloration is widespread. The chemically defended wood tiger moth Arctia plantaginis shows both geographic variation and local polymorphism in warning coloration. In this thesis, I studied whether predation by local avian predators is driving the evolution of wood tiger moth warning colours. The close relatives of the wood tiger moth designated here to genus Arctia do not show similar colour polymorphism. The wood tiger moth is thus apparently under evolutionary radiation and provides a natural laboratory for observing curr…

research product

Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth

AbstractWarning signals are predicted to develop signal monomorphism via positive frequency-dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large-scale predation experiment in four locations, among which the frequencies of hindwing warning coloration of aposematic Arctia plantaginis differ. Here we show that selection by avian predators on warning colour is predicted by local morph frequency and predator community composition. We found +FDS to be strongest in monomorphic Scotland, and in contrast, lowest in polymorphic Finland, where different predators favour different male morphs. +FDS was also found in Geo…

research product

Colour alone matters : no predator generalization among morphs of an aposematic moth

Local warning colour polymorphism, frequently observed in aposematic organisms, is evolutionarily puzzling. This is because variation in aposematic signals is expected to be selected against due to predators' difficulties associating several signals with a given unprofitable prey. One possible explanation for the existence of such variation is predator generalization, which occurs when predators learn to avoid one form and consequently avoid other sufficiently similar forms, relaxing selection for monomorphic signals. We tested this hypothesis by exposing the three different colour morphs of the aposematic wood tiger moth, Arctia plantaginis, existing in Finland to local wild-caught predato…

research product

Multimodal Aposematic Signals and Their Emerging Role in Mate Attraction

Chemically defended animals often display conspicuous color patterns that predators learn to associate with their unprofitability and subsequently avoid. Such animals (i.e., aposematic), deter predators by stimulating their visual and chemical sensory channels. Hence, aposematism is considered to be “multimodal.” The evolution of warning signals (and to a lesser degree their accompanying chemical defenses) is fundamentally linked to natural selection by predators. Lately, however, increasing evidence also points to a role of sexual selection shaping warning signal evolution. One of the species in which this has been shown is the wood tiger moth, Arctia plantaginis, which we here put forward…

research product

The dual role of rivers in facilitating or hindering movements of the false heath fritillary butterfly

Background Species movement responses to landscape structures have been studied using a variety of methods, but movement research is still in need of simple methods that help predicting and comparing movements across structurally different landscapes. We demonstrate how habitat-specific movement models can be used to disentangle causes of differentiated movement patterns in structurally different landscapes and to predict movement patterns in altered and artificial landscapes. In our case study, we studied the role of riparian landscapes to the persistence of the endangered false heath fritillary butterfly (Melitaea diamina) in its newly discovered coastal distribution region in Finland. We…

research product

Reed Warbler Hosts Do Not Fine-Tune Mobbing Defenses During the Breeding Season, Even When Cuckoos Are Rare

Hosts of brood parasitic cuckoos often employ mobbing attacks to defend their nests and, when mobbing is costly, hosts are predicted to adjust their mobbing to match parasitism risk. While evidence exists for fine-tuned plasticity, it remains unclear why mobbing does not track larger seasonal changes in parasitism risk. Here we test a possible explanation from parental investment theory: parents should defend their current brood more intensively as the opportunity to replace it declines (re-nesting potential), and therefore “counteract” any apparent seasonal decline to match parasitism risk. We take advantage of mobbing experiments conducted at two sites where reed warblers (Acrocephalus sc…

research product

Data from: The dual role of rivers in facilitating or hindering movements of the false heath fritillary butterfly

Background: Species movement responses to landscape structures have been studied using a variety of methods, but movement research is still in need of simple methods that help predicting and comparing movements across structurally different landscapes. We demonstrate how habitat-specific movement models can be used to disentangle causes of differentiated movement patterns in structurally different landscapes and to predict movement patterns in altered and artificial landscapes. In our case study, we studied the role of riparian landscapes to the persistence of the endangered false heath fritillary butterfly (Melitaea diamina) in its newly discovered coastal distribution region in Finland. W…

research product