0000000000890392

AUTHOR

Igor Bezverkhyy

0000-0001-8762-6687

Flexible vs Rigid Networks of Two Isoreticular Viologen-Carboxylate based PCPs: the Ligand Size Effect

International audience

research product

Trapping AsPh3 via reaction with NiS/γ-Al2O3 in the presence of H2: Reaction mechanism and kinetics

International audience; Removal of As from petroleum feedstocks is an important process which can be realized using As trapping mass containing supported nickel sulfide. In order to understand the mechanism of the trapping we studied the reaction of AsPh3 with NiS/γ-Al2O3 in the presence of H2 in a batch reactor in toluene solution at 230 °C. This reaction results in formation of NiAs, benzene and H2S. Also, the intermediate species, thiophenol and diphenylsulfide, were observed. Despite formation of NiAs layer in the course of reaction, the rate of AsPh3 decomposition is not affected by the solid state diffusion up to ∼ 50 % of nickel conversion. The rate determining step in these conditio…

research product

Inside Back Cover: Mesoporous Silica-Confined Manganese Oxide Nanoparticles as Highly Efficient Catalysts for the Low-Temperature Elimination of Formaldehyde (ChemCatChem 1/2014)

research product

Chemoselective heterogeneous iridium catalyzed hydrogenation of cinnamalaniline

International audience; Selective hydrogenation of unsaturated imines over heterogeneous catalysts is an ecologically feasible and effective way to produce commercially valuable saturated imines and unsaturated amines under mild conditions, avoiding the utilization of toxic halides. The liquid-phase hydrogenation of a model imine, cinnamalaniline, over Ir, Ru, Pd and Au catalysts was studied in polar protic (methanol, 2-propanol), polar aprotic (methyl tert-butyl ether) and non-polar aprotic (toluene) solvents at 40-80°C under atmospheric hydrogen pressure. Different metal oxides (Al 2 O 3 , ZrO 2 , SiO 2) and carbon composites based on carbon nitrides synthesized by pyrolysis of ethylenedi…

research product

ZnO nanorods covered with a TiO2 layer: simple sol–gel preparation, and optical, photocatalytic and photoelectrochemical properties

In this work, composite core–shell ZnO/TiO2 materials were fabricated by deposition of TiO2 layers via a sol–gel method onto ZnO nanorods hydrothermally grown on an ITO electrode. Two approaches to the sol–gel procedure resulted in strongly different morphologies and thicknesses of the deposited TiO2 layer, as shown in electron microscopy studies. The decrease of the optical band gap energies of the ZnO/TiO2 composites by about 0.2–0.3 eV with respect to the TiO2 nanoparticles and ZnO nanorods was determined from UV-Vis diffuse reflectance spectra. The photocatalytic activities of the systems were determined by investigation of the decolorization of Methylene Blue (MB) in aqueous solution, …

research product

Enhancement of visible light photoelectrocatalytic activity of ZnO(core)/TiO2(shell) composite by N-doping and decorating with Au0 nanoparticles

Abstract The composites consisting of ITO-supported ZnO nanorods covered with TiO2 shell were doped with nitrogen and decorated with gold nanoparticles in order to improve their photocatalytic activity under visible light. N-doped TiO2 (TiO2(N)) was prepared under mild conditions through a simple sol-gel synthesis in the presence of NH4Cl. Such procedure results in formation of a highly porous shell of TiO2(N) on the ZnO nanorods. The gold nanoparticles (AuNPs) of the size 7–25 nm were grafted onto the surface of TiO2 as well as TiO2(N) by a photodeposition method from aqueous solution of [AuCl(4-x)(OH)x]− precursor at pH 6.7. The composition and microstructure of the prepared samples were …

research product

Detection of lung cancer bio-markers in human breath using a micro-fabricated air analyzer

International audience; The analysis of volatile organic compounds (VOCs) that are linked to lung cancer is a very promising way in medical diagnostics because it is non-invasive and potentially inexpensive. In that sense, a silicon micro-analytical platform consisting of a three-dimensional micro-preconcentrator coupled to a silicon spiral gas chromatographic micro-column was built. A metal oxide-based gas sensor acted as a miniaturized gas detector. This system allowed selective detection of VOCs at the sub-ppm level. The present study is focused first on the chromatographic air analyzer fabrication and second on the selection of an appropriate adsorbent. Various adsorbents such as activa…

research product

New insight on the lithium hydride–water vapor reaction system

Abstract The reaction of lithium hydride (LiH) powder with pure water vapor (H2O and D2O) was studied by thermogravimetry and in situ infrared spectroscopy at 298 K over a large pressure range. The mean particle size of LiH is around 27 μm. At very low pressure, the hydrolysis starts with the formation of lithium oxide (Li2O). Then, both Li2O and lithium hydroxide (LiOH) are formed on increasing pressure, thus, creating a Li2O/LiOH bilayer. The reaction takes place through the consumption of LiH and the formation of Li2O at the LiH/Li2O interface and through the consumption of Li2O and the formation of LiOH at the Li2O/LiOH interface. Above 10 hPa, only the monohydrate LiOH·H2O is formed. T…

research product

Isomerization of α-pinene oxide over ZSM-5 based micro-mesoporous materials

Abstract Few types of ZSM-5 based micro-mesoporous materials obtained via a dual template method, steam-assisted conversion and dual-functional templating were evaluated in α-pinene oxide isomerization. Complete conversion and the highest selectivity towards trans-carveol (ca. 40–43%) were achieved over X-ray amorphous micro-mesoporous aluminosilicates as well as mesoporous molecular sieves AlSi-SBA-15. In addition, X-ray amorphous samples containing the secondary building units of ZSM-5 zeolite demonstrated the highest rate of α-pinene oxide isomerization. The yield of the most desired product trans-carveol to a large extent depends on the accessibility of acid sites to the reagents molecu…

research product

Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine

International audience; Previous publication of the authors presented evidences that electroch emical oxidation of Mg(II) porphine (fully unsubstituted porphyrin, MgP) in acetonitrile (AN) at a very low potential leads to deposition of films at electrode surface corresponding to typical electroactive polymers, with their reversible transition betwee n the electronconducting and insulating states depending on the electrode potential/oxidation level ("film of type I"). It is demonstrated in the actual publication that these films in contact with a monomer-free solution are subject to an irreversible transformation to quite a different material ("film of type II") under the influence of a high…

research product

Magnesium(II) polyporphine: The first electron-conducting polymer with directly linked unsubstituted porphyrin units obtained by electrooxidation at a very low potential

Abstract Electrooxidation of magnesium(II) porphine, a totally unsubstituted porphyrin, in acetonitrile solution under potentiostatic or potentiodynamic regime leads to a polymer film at the electrode surface. Polymer deposition takes place at extremely low potential, several hundred mV less positive even compared to the deposition potential for pyrrole or EDOT (at identical monomer concentrations) in the same solvent. Film thickness can be controlled by the passed deposition charge. This material and its THF-soluble fraction have been characterized by various electrochemical methods as well as by UV–visible and IR spectroscopies, XPS, XRD and MALDI-TOF techniques. This analysis has allowed…

research product

New force field for GCMC simulations of D 2 /H 2 quantum sieving in pure silica zeolites

International audience; We report a study on adsorption and coadsorption of H2 and D2 in FAU, MFI and CHA pure silica zeolites having different pore sizes and shapes. Adsorption capacities, selectivities, enthalpies and entropies are determined by combining experiments and GCMC simulations. We show that the force fields available in the literature cannot predict the adsorption equilibria below 77 K with sufficient accuracy. Here we propose a new force field adjusted by using our experimental data obtained for the pure silica MFI zeolite at 65 K and 77 K. With this new force field, it is possible to predict the adsorption and coadsorption equilibria on the three zeolite structures in a tempe…

research product

Porous Coordination Polymer Based on Bipyridinium Carboxylate Linkers with High and Reversible Ammonia Uptake

The zwitterionic bipyridinium carboxylate ligand 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium (pc1) in the presence of cadmium chloride affords novel porous coordination polymers (PCPs): [Cd4(pc1)3Cl6]·CdCl4·guest (1) crystallizing in the P3̅1c space group. In the structure, [Cd4Cl6(CO2)6] building units are linked together by six pc1 ligands, leading to a 3D high-symmetrical network exhibiting hexagonal channels along the c axis. The walls of this PCP consist of cationic electron-acceptor bipyridinium units. The PCP 1 reversibly adsorbs H2O and CH3OH up to about 0.1 g/g at saturation showing the adsorption isotherms characteristic of a moderately hydrophilic sorbent. Adsorption of ammonia (…

research product

Photo-induced cubic-to-hexagonal polytype transition in silicon nanowires

Transformation of the crystalline lattice in silicon nanowires from cubic diamond (cub-Si) to hexagonal diamond (hex-Si) was observed under laser irradiation at intensities above 10 kW cm−2 (wavelength of 473 nm) by appearance of an additional peak in their Raman spectra in the range from 490 to 505 cm−1. Formation of the hex-Si phase in SiNWs is favoured by strong mechanical stresses caused by inhomogeneous photo-induced heating, which results in a singlet–doublet splitting of the Raman peaks for LO and TO phonons at about 517 and 510 cm−1, respectively. The estimated values of the photo-induced mechanical stresses and temperatures required for the polytype transformation in SiNWs correspo…

research product

A robust viologen and Mn-based porous coordination polymer with two types of Lewis acid sites providing high affinity for H 2 O, CO 2 and NH 3

A novel porous coordination polymer [Mn(pc3)(H2O)2]·xH2O (3 < x < 4) is synthesized in water at pH = 7 using the anionic viologen-carboxylate ligand 4,4′-bipyridinium,1,1′-bis-(2,4-dicarboxyphenyl) (pc32−). Dehydration of the material results in the formation of open pores containing two types of accessible Lewis acid sites: exposed Mn2+ cations and N+ atoms of viologen units. Due to this property the PCP shows high affinity and capacity in the adsorption of H2O, CO2 and NH3. Despite the presence of strong adsorption sites this material is stable in liquid water and in gaseous NH3.

research product

Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis

International audience; The aim of this work was to identify a nanoporous material able to trap toluene traces in order to develop a gas detection device for indoor air quality monitoring or biomedical diagnosis. A set of various adsorbents such as zeolites and activated carbon microspheres was studied here. First a detailed characterization of their porous properties was performed by nitrogen adsorption. Then adsorption of toluene and other interfering compounds which can selectively adsorbed with it, such as water and carbon dioxide, was studied in order to select the most suitable material. Results revealed that the activatedcarbon microspheres W5 and the zeolite NaY, which exhibit high …

research product

Chromatographic Air Analyzer Microsystem for the Selective and Sensitive Detection of Explosive-related Compounds

Abstract The detection of explosives and explosive-related compounds is of major importance for the monitoring of explosive- contaminated sites. Current methods need to become cheaper and portable while maintaining a high sensitivity and selectivity level. In that sense, a silicon micro-analytical platform consisting of a three-dimensional micro-preconcentrator based on a hydrophobic zeolite, coupled to a silicon spiral micro-column was built. A chemical gas sensor acted as a miniaturized gas detector. This system allowed selective detection of orthonitrotoluene (ONT), an explosive-related compound at the sub-ppm level in the presence of toluene and moisture.

research product

Adsorption of hydrogen isotopes in the zeolite NaX: Experiments and simulations

Abstract Among the different methods to separate hydrogen isotopes one is based on the physisorption at low temperature (below 100 K) where quantum effects induce a particular behavior. In the present work, we study the adsorption of single H 2 and D 2 on the zeolite NaX by combining experiments (manometry) from 30 to 150 K and molecular dynamics simulations at 40 and 77 K. Simulations also include the adsorption analysis for T 2 . Adsorption on NaX membranes is simulated and quantum corrections are introduced by using the well-known Feynman–Hibbs approach into the interaction potentials. Experimental adsorption isotherms are reproduced by using the Toth equation and it is shown that the ad…

research product

Reactive adsorption of thiophene on Ni/ZnO: role of hydrogen pretreatment and nature of the rate determining step.

Abstract Reactive adsorption of thiophene on reduced and unreduced NiO/ZnO adsorbents was studied by thermal gravimetric analysis and by sulfidation in a fixed bed reactor at 330–375 °C and 10–40 mbar of thiophene in hydrogen. The adsorbents (12 wt% Ni) were prepared by co-precipitation of corresponding nitrates with sodium carbonate followed by calcination at 400 °C. We have found that such solids can react with thiophene without any prior reduction. Metallic Ni, indispensable for thiophene decomposition, is formed in this case in situ upon the contact with thiophene/H 2 reaction mixture. The reduction of NiO/ZnO in H 2 (360 °C, 6 h) results in the formation of Ni–Zn alloyed particles (as …

research product

Preparation of magnetic composites of MIL-53(Fe) or MIL-100(Fe) via partial transformation of their framework into γ-Fe2O3

A novel two-step approach is proposed to obtain magnetically active composite materials consisting of MIL-53(Fe) or MIL-100(Fe) and γ-Fe2O3 particles. The first step consists in a partial transformation of the framework into a layer of γ-FeO(OH) (lepidocrocite) covering the MOF particles. We found that such a transformation can be realized under air-free conditions by hydrolysing the MOFs at pH 6.2 in the presence of FeSO4. In the second step the obtained γ-FeO(OH)/MOF composite is heated under an air flow at 250 °C in order to transform γ-FeO(OH) to γ-Fe2O3. The thus prepared composites containing 40 wt% of the magnetic phase were characterized in detail by XRD, HRTEM, FESEM, N2 adsorption…

research product

Development of a micro-analytical prototype for selective trace detection of orthonitrotoluene

Abstract A silicon micro-analytical platform consisting of a micro-preconcentrator based on a hydrophobic zeolite, coupled to a silicon spiral micro-column was built. A chemical gas sensor acted as a miniaturized gas detector. This system allowed selective detection of orthonitrotoluene (ONT), an explosive-related compound at the sub-ppm level (365 ppb) in the presence of toluene and moisture.

research product

Hierarchical Beta zeolites obtained in concentrated reaction mixtures as catalysts in tetrahydropyranylation of alcohols

Abstract Hierarchical zeolites consisting of Beta nanoparticles (15–40 nm) were obtained via hydrothermal treatment of a concentrated zeolite gel-precursor (H2O/Si = 2.5–14) without utilization of complex SDAs. The proposed approach is based on the formation of a large number of zeolite nuclei under particular crystallization conditions, followed by their agglomeration resulting in the dense packing of the particles preventing their further growth. The micelles of cetyltrimethylammonium bromide (CTAB) can be used to additionally limit the growth of zeolite nanoparticles during hydrothermal treatment of concentrated reaction mixtures. Such deceleration of crystallization promotes the formati…

research product

Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: Effect of temperature and pH

Abstract The degradation in liquid water of two iron-containing MOFs MIL-100(Fe) and MIL-53(Fe) synthesized in fluoride-free conditions was studied. It was found that dispersing the MOFs in deionized water (1 mg/mL) results in the decrease of pH to 2.9 for MIL-100(Fe) and to 4.5 for MIL-53(Fe). Given this finding the stability of the MOFs in liquid water was characterized under two different sets of conditions: 1) reflux in water at 100 °C under obtained pH and 2) at ambient temperature under adjusted pH 7. After reflux of MIL-100(Fe) at 100 °C its XRD pattern remains unchanged, however a strong decrease of its BET surface area and appearance of α-Fe 2 O 3 nanoparticles point out to a parti…

research product

Optimization of MCM-41 type silica nanoparticles for biological applications: Control of size and absence of aggregation and cell cytotoxicity

Abstract Mesoporous silica nanoparticles were synthesized at high pH using CTAB as a template and TEOS as a silica precursor. It was shown that varying the NaOH concentration between 5 and 27.5 mM allows the size, pore and silica structure of mesoporous nanoparticles to be precisely tuned. In particular, monodisperse nanoparticles with the MCM-41 structure with size ranging from 90 nm to 450 nm were obtained by increasing the NaOH concentration from 12.5 to 22.5 mM. It thus demonstrates that NaOH concentration must range between 12.5 and 15 mM in order to prepare MCM-41 silica nanoparticles with optimal size for nanovectorization. We also found that under usual conditions the aggregation of…

research product

Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations

Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our s…

research product

Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor

International audience; The analysis of exhaled volatile organic compounds (VOCs) related to lung cancer is a very promising wayin medical diagnosis because it is non-invasive and much less expensive than traditional medical analysisused so far. In that sense, a silicon micro-analytical platform consisting of a micro-preconcentrator cou-pled to a silicon spiral gas chromatographic micro-column was built, and a metal oxide-based gas sensorwas used as a miniaturized gas detector. This micro-fabricated device was successfully tested to selec-tively detect low concentrations of VOCs considered as lung cancer biomarkers, within a few minuteseven in presence of high concentrations of water vapor …

research product

Interaction of Ni/SiO2 with thiophene.

Abstract The interaction between Ni/SiO 2 (18 wt%) and thiophene was studied by thermal gravimetric analysis (TGA) and in a fixed-bed reactor. The samples were prepared by incipient wetness impregnation and reaction was realized in hydrogen flow at 280–360 °C in the presence of 10–40 mbar of thiophene. It is found that sulfidation of Ni is not complete in TGA experiments and the maximum achievable transformation degree depends not only on the temperature and thiophene pressure, but also on the sample weight and the gas flow rate. The maximum transformation degree is shown to vary reversibly when conditions are changed. Analysis of the reaction products during sulfidation in a fixed-bed reac…

research product

Reaction of thiophene with mono- and bimetallic Ni–Co particles supported on γ-Al2O3 and HDS activities of obtained sulfides

Abstract Reaction between thiophene and M/γ-Al2O3 (20 wt.%, M = Ni, Co, 2Ni–Co and 2Co–Ni) was studied by thermal gravimetric analysis (TGA) and by sulfidation in a fixed bed microreactor. The samples were prepared by incipient wetness impregnation followed by drying and reduction in hydrogen flow at 450 °C. Formation of bimetallic particles in samples containing both Ni and Co was confirmed by HRTEM with EDX analysis. The reaction with thiophene (20 or 40 mbar) was done at 360 °C in hydrogen atmosphere. TGA of the reaction with thiophene revealed that the initial rate of sulfidation drops sharply when going from Ni/γ-Al2O3 to Co/γ-Al2O3 (by a factor of 40 under used conditions). It follows…

research product

Sulfidation Mechanism of Pure and Cu-Doped ZnO Nanoparticles at Moderate Temperature: TEM and In Situ XRD Studies

International audience; Sulfidation mechanism of pure and Cu-doped ZnO nanoparticles (Cu0.03Zn0.97O and Cu0.06Zn0.94O) at 250 and 350 degrees C was studied by transmission electron microscopy (TEM) and in situ synchrotron XRD. For nondoped ZnO, we observed by TEM that partial reaction with H2S is accompanied by the formation of voids at the ZnO/ZnS interface. This phenomenon (known as the Kirkendall effect) confirms that sulfidation of nanosized ZnO by gaseous H2S proceeds via the outward growth of ZnS: Zn2+ and O2- are transferred to the external (ZnS/gas) surface, where zinc is combined with sulfur and oxygen reacts with protons yielding H2O. During sulfidation of Cu-doped ZnO, the caviti…

research product

Ternary transition metals sulfides in hydrotreating catalysis.

International audience; Pure microcrystalline barium molybdate BaMoO4 and barium tungstate BaWO4 materials were prepared by molten flux reaction using alkali metal nitrates as reaction media. The obtained crystals have rhombic shape and expose mostly (111) crystallographic planes. Their mean size depends on the flux temperature and the nature of the alkali metal cation. Monomeric molybdate and tungstate used as precursors yield target products already at 673 K whereas if polymerized ammonium oxosalts were used, then higher temperatures were necessary to obtain barium salts. The optimal temperature for the preparation of pure crystals with well defined shape was found to be near 773 K. UV–vi…

research product

Insight into the Mechanism of Water Adsorption/Desorption in Hydrophilic Viologen-Carboxylate Based PCP

A water stable and highly hydrophilic porous coordination polymer based on viologen-carboxylate type ligand, the 4,4′-bipyridinium,1,1-bis(3-carboxyphenyl) (pc2), is obtained by the solvothermal method: [Cd3(pc2) (BTC)2(H2O)2]·6H2O ([1(H2O)2]·6H2O; BTC3– = 1,3,5-carboxybenzene). Its crystal structure and the ones of two partially dehydrated phases have been determined, allowing insight into the mechanism of water adsorption/desorption of this PCP material. It is shown that the dehydrated compound [1] first adsorbs two water molecules which fill the pores, leading to [1]·2H2O. On the other hand, the partial dehydration of the as-synthesized compound leads to the intermediate phase [1(H2O)]·3…

research product

Hyperstoichiometric interaction between silver and mercury at the nanoscale.

Breaking through the stoichiometry barrier: As the diameter of silver particles is decreased below a critical size of 32?nm, the molar ratio of aqueous HgII to Ag0 drastically increases beyond the conventional Hg/Ag ratio of 0.5:1, leading to hyperstoichiometry with a maximum ratio of 1.125:1 (see figure). Therein, around 99?% of the initial silver is retained to rapidly form a solid amalgam with reduced mercury.

research product

Polypyrrole–palladium nanoparticles composite as efficient catalyst for Suzuki–Miyaura coupling

International audience; Synthesis of a new hybrid material (Pd/PPy) composed of polypyrrole globules with uniformly incorporated Pd nanoparticles via direct redox reaction between pyrrole and Pd(NH3)(4)Cl-2 in water has been recently reported (V.A. Zinovyeva, M.A.Vorotyntsev, I. Bezverkhyy, D. Chaumont, J.-C. Hierso, Adv. Funct. Mater. 21 (2011) 1064-1075). In the actual study, this procedure has been extended to synthesize a series of Pd/PPy powders with variable palladium content and morphological parameters. Depending on the monomer-to-oxidant ratio in reaction mixture, average diameters of Pd and PPy particles may change in the ranges of 1.25-1.45 and 27-62 nm, respectively, the Pd conc…

research product

Mesoporous SiC with Potential Catalytic Application by Electrochemical Dissolution of Polycrystalline 3C-SiC

Electrochemical dissolution of highly doped (ρ ∼ 1 mΩ·cm, n-type) polycrystalline 3C-SiC in HF/H2O and HF/H2O/ethanol solutions allowed production of porous silicon carbide (por-SiC) and soluble carbon fluorooxide nanoparticles as a byproduct. The por-SiC is a crystalline material with large pore volume, surface area close to 100 m2 g–1, and open mesoporous structure. The surface of por-SiC is covered with a thin carbon-enriched layer, bearing carboxylic acid groups. Depending on the SiC resistivity, etchant composition, and current density, three different types of por-SiC morphology, namely, a macroporous tubular, mesoporous hierarchical, and mesoporous filamentary were revealed. A qualit…

research product

Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism

Abstract ZnO/TiO2 composites were prepared by sol-gel deposition of TiO2 on ZnO nanorods hydrothermally grown on electrically conductive indium tin oxide substrate (ITO). It has been shown that the ZnO/TiO2 interface plays a key role in enhancement of photodecomposition of methylene blue (MB) used as a model test pollutant, under monochromatic light irradiation (400 nm). The increase of photocatalytic activity was attributed to the shift of absorption edge of ZnO/TiO2 towards visible light in comparison with bare TiO2. Further enhancement of photocatalytic activity of ZnO/TiO2 was achieved through its additional calcination at 450 °C for 3 h. This treatment brings 40% increase in the rate o…

research product

D2 and H2 adsorption capacity and selectivity in CHA zeolites: Effect of Si/Al ratio, cationic composition and temperature

International audience; The work deals with the effect of composition of CHA zeolites on the adsorption and separation of H2 and D2 under cryogenic temperatures. In the first part of this work the effect of Si/Al ratio and cationic composition on single gas adsorption of H2 and D2 was studied at 77.4 K. It was found that the adsorption capacities increase with Al content up to Si/Al = 2.1. Unexpectedly, Na-CHA zeolite with the highest Al content (Si/Al = 1.1) adsorbs only negligible amount because of the collapse of the zeolite structure upon dehydration at 400°C. The Na-and Li-containing chabazites with Si/Al = 2.1 possess similar adsorption capacities. In contrast, progressive replacement…

research product

Highly Dispersed Palladium-Polypyrrole Nanocomposites: In-Water Synthesis and Application for Catalytic Arylation of Heteroaromatics by Direct C-H Bond Activation

Pd@PPy hybrid catalytic materials are synthesized in water via redox polymerization reaction of pyrrole with [Pd(NH 3 ) 4 Cl 2 ]. The nanocomposites formed are composed of highly dispersed palladium particles which are either zerovalent or easily reducible, and are embedded in spherical polypyrrole globules. A unique combination of high palladium dispersion (NP size: 2.4 nm) and elevated palladium content (35 wt%) is obtained. The components of these novel nanocomposites are characterized by means of FTIR, XPS, XRD, SEM, and TEM microscopy techniques. The process of formation in solution is also monitored using UV-visible and DLS techniques. The application of these novel hybrid nanomateria…

research product

Nanocrystalline ZnCO3—A novel sorbent for low-temperature removal of H2S

Abstract The reactivity of a nanocrystalline ZnCO 3 toward H 2 S (0.2 vol% in N 2 /H 2 mixture) at 140–180 °C was characterized by thermal gravimetric analysis and by breakthrough curves measurements. We have found that under used conditions transformation of ZnCO 3 into ZnS is complete and the rate determining step of the sulfidation is the surface reaction. Such behavior is in strike contrast with that of ZnO whose sulfidation is severely limited by diffusion. The higher reactivity of ZnCO 3 in comparison with ZnO is attributed to the different microstructure of ZnS layer formed in these materials after a partial sulfidation. As in ZnO–ZnS transformation the molar volume increases (from 1…

research product

Size and Surface Chemistry Tuning of Silicon Carbide Nanoparticles.

International audience; Chemical transformations on the surface of commercially available 3C-SiC nanoparticles were studied by means of FTIR, XPS, and temperature-programmed desorption mass spectrometry methods. Thermal oxidation of SiC NPs resulted in the formation of a hydroxylated SiO2 surface layer with C3Si–H and CHx groups over the SiO2/SiC interface. Controllable oxidation followed by oxide dissolution in HF or KOH solution allowed the SiC NPs size tuning from 17 to 9 nm. Oxide-free SiC surfaces, terminated by hydroxyls and C3Si–H groups, can be efficiently functionalized by alkenes under thermal or photochemical initiation. Treatment of SiC NPs by HF/HNO3 mixture produces a carbon-e…

research product

Selective adsorption of formaldehyde and water vapors in NaY and NaX zeolites

International audience; Coadsorption of formaldehyde and water vapors on NaX and NaY zeolites is studied at 298 K in the pressure range 0-2 hPa by manometry coupled with gas phase chromatography and calorimetry. Coadsorption isotherms, adsorption selectivities and coadsorption heats are measured. Results show that the coadsorption process is selective for water at low filling and for formaldehyde at high filling. The adsorption selectivity for formaldehyde over water is however too low to consider the possibility of using such adsorbents for the development of air handling units. On the other hand, a preliminary study carried out on the adsorption of formaldehyde and water in pure gas phase…

research product

Low Temperature H2S Removal with Metal-Doped Nanostructure ZnO Sorbents: Study of the Origin of Enhanced Reactivity in Cu-Containing Materials

Sulfidation of pure and metal-doped ZnO nanostructure sorbents (M0.03Zn0.97O, M = Fe, Co, Ni, Cu) was studied in order to clarify the effect of metal on the transformation kinetics at 200−350 °C. The solids were prepared by coprecipitation from metal nitrate solution followed by calcination at 400 °C. Reaction with H2S was studied by thermal gravimetric analysis (TGA) using a gas mixture containing 0.2 vol % H2S in equimolar H2−N2. It was found that at 350 °C the TGA sulfidation profiles of all studied samples are similar, with the interface reaction being the main rate-determining step. After lowering the temperature to 250 °C the transformation of Cu0.03Zn0.97O continues to be controlled …

research product

Temperature-Induced Structural Transitions in the Gallium-Based MIL-53 Metal–Organic Framework

We report a structural and thermodynamic investigation of the phase behavior of Ga(OH,F)-MIL-53, a gallium-based metal–organic framework (MOF) having the MIL-53 topology containing 0.7 wt % fluorine bonded to the metal. Despite some small structural differences, especially for the hydrated form, the overall physical chemistry behavior of Ga(OH,F)-MIL-53 is very similar to standard fluorine free Ga-MIL-53 material. A combination of in situ X-ray diffraction, in situ Fourier transform infrared spectroscopy, differential scanning calorimetry, and heat capacity measurements allowed us to establish that Ga(OH,F)-MIL-53 under vacuum (i.e., the empty material) exhibits two stable phases: a nonporo…

research product

Synthesis and Characterization of Palladium Nanoparticle/Polypyrrole Composites

In this work, a simple non-template one-step method for the synthesis of 2.0−2.5 nm palladium nanoparticles encapsulated into a polypyrrole shell via direct redox reaction between palladium(II) acetate and pyrrole in acetonitrile medium is described. Palladium nanoparticles are found to be able to self-organize into spherical Pd/PPy composites. The size of the Pd/PPy composite particles and Pd content in the composite depend strongly on the concentration of the palladium salt component. The combination of elemental CHNS and thermogravimetric (TGA) analysis was used to determine a high (∼40 wt %) content of palladium, which is in a good agreement with EDX data. The process of Pd/PPy composit…

research product

Novel Porous Carbon Material for the Detection of Traces of Volatile Organic Compounds in Indoor Air

International audience; A highly sensitive and selective silicon-based microanalytical prototype was used to identify a few ppb of volatile organic compounds (VOCs) in indoor air. Herein, a new nonactivated tannin-derived carbon synthesized by an environmentally friendly method, DM2C, a MIL-101(Cr) MOF, and a DaY zeolite were selected for the preconcentration of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes). Integrating a small amount of these nanoporous solids inside a miniaturized preconcentration unit led to excellent preconcentration performance. By taking advantage of the high adsorption−desorption capacities of the DM2C adsorbent, concentrations as low as 23.5, 30…

research product

New insights in the formation of silanol defects in silicalite-1 by water intrusion under high pressure.

International audience; The "water-silicalite-1" system is known to act as a molecular spring. The successive intrusion-extrusion cycles of liquid water in small crystallites (6 × 3 × 0.5 μm(3)) of hydrophobic silicalite-1 were studied by volumetric and calorimetric techniques. The experiments displayed a decrease of the intrusion pressure between the first intrusion-extrusion cycle and the consecutive ones, whereas the extrusion pressures remained unchanged. However, neither XRD studies nor SEM observations revealed any structural and morphological modifications of silicalite-1 at the long-range order. Such a shift in the value of the intrusion pressure after the first water intrusion-extr…

research product

MIL-53(Al) under reflux in water: Formation of γ-AlO(OH) shell and H2BDC molecules intercalated into the pores

Abstract It is shown that treatment of MIL-53(Al) (Al(OH)BDC·H2O, BDC = 1,4-benzene dicarboxylate) under reflux in water results in a progressive transformation of the solid into a new well crystallized phase. After reflux for 10 h or more the new phase is obtained in a pure form and its XRD pattern was indexed in a monoclinic system with the following cell parameters: a = 19.47 A, b = 8.98 A, c = 6.60 A, β = 107.7°. Characterization of the obtained solid by TGA, FT-IR, NMR, TEM and XRD has revealed that its composition is [0.8Al(OH)BDC·0.2H2BDC] + 0.2γ-AlO(OH). Formation of this material indicates that under reflux in water a partial hydrolysis of the MOF network occurs producing H2BDC mol…

research product

Photo- and Thermochromic and Adsorption Properties of Porous Coordination Polymers Based on Bipyridinium Carboxylate Ligands

The zwitterionic bipyridinium carboxylate ligand 1-(4-carboxyphenyl)-4,4'-bipyridinium (hpc1) in the presence of 1,4-benzenedicarboxylate anions (BDC(2-)) and Zn(2+) ions affords three porous coordination polymers (PCPs): [Zn5(hpc1)2(BDC)4(HCO2)2]·2DMF·EtOH·H2O (1), [Zn3(hpc1)(BDC)2(HCO2)(OH)(H2O)]·DMF·EtOH·H2O (2), and [Zn10(hpc1)4(BDC)7(HCO2)2(OH)4(EtOH)2]·3DMF·3H2O (3), with the formate anions resulting from the in situ decomposition of dimethylformamide (DMF) solvent molecules. 1 and 3 are photo- and thermochromic, turning dark green as a result of the formation of bipyridinium radicals, as shown by electron paramagnetic resonance measurements. Particularly, crystals of 3 are very photo…

research product

Selection and characterization of adsorbents for the analysis of an explosive-related molecule traces in the air

International audience; This study is focused on the development of a 3D micro-preconcentrator for a sensitive analysis of an explosive-related compound: orthonitrotoluene (ONT). A set of potentially efficient adsorbents for the pre-concentration of ONT was investigated here. An in-depth characterization of their textural properties was carried out in order to better understand their adsorption behavior toward the target analyte. More particularly, this study allowed highlighting the interesting adsorption features of a hydrophobic zeolite and a porous activated carbon in relation to their preconcentration performances toward ONT at the ppb level. Moreover, we found a difference in the adso…

research product

Synthesis of micro-mesoporous aluminosilicates on the basis of ZSM-5 zeolite using dual-functional templates at presence of micellar and molecular templates

Abstract Micro-mesoporous aluminosilicates consisting of agglomerates of the ZSM-5 nanoparticles were obtained using dual-functional templates [C6H13–N+(CH3)2–C6H12–N+(CH3)2–C6H13](Br−)2 (C6–6–6Br2), [C8H17–N+(CH3)2–C6H12–N+(CH3)2–C8H17](Br−)2 (C8–6–8Br2). Aluminosilicates with randomly oriented flake-like particles built from ZSM-5 layers were obtained using [C16H33–N+(CH3)2–C6H12–N+(CH3)2–C6H13](Br−)2 (C16–6–6Br2). Use of С8–6–8Br2 and additive of cetyltrimethylammonium bromide CTAB (CTAB concentration is lower than the first critical micelle concentration, CMC1) leads to an increase of the total specific surface area, mesopore surface area and the mesopore size uniformity in the product,…

research product

Mesoporous silicon carbide via nanocasting of Ludox® xerogel

Porous SiC with uniformly sized 12 nm and 22 nm spherical mesopores was synthesized from nanocomposites of polycarbosilane (PCS) preceramic polymer and xerogels of Ludox® SiO2 nanoparticles as templates. The influence of PCS type (Mw 800 and 2000 Da), PCS : SiO2 ratio, pyrolysis temperature 1200–1400 °C, and addition of Ni complex to the preceramic composite was studied with respect to the SiC porous morphology, crystalline structure and chemical properties. We found that the pore walls of Ni-free por-SiC are composed of relatively large (20 nm) crystallites embedded inside a poorly crystalline SiC/SiC1+x phase. Increasing the pyrolysis temperature resulted in an increase of the large cryst…

research product

Towards a Study of Effects on Hydrogen Diffusion into T40 Titanium Alloys

In a global study of titanium alloys behavior in specific aqueous solution (embrittlement, corrosion and corrosion under stresses), the present work focuses on hydrogen diffusion into the metal and the consequences on its microstructure. Two ways of hydrogen charging were used to investigate this issue (gaseous and cathodic charging). The final aim is to determine a fitted method to create an identified microstructure and then to perform accelerated aging tests of titanium U-Bend samples into an autoclave with a specific environment. Hydrogen absorption and formation of titanium hydride have been studied by SEM analyses and by X-ray diffraction methods.

research product

Enhancement of D 2 /H 2 Selectivity in Zeolite A through Partial Na–K Exchange: Single-Gas and Coadsorption Studies at 45–77 K

International audience; We report D2/H2 adsorption selectivities under cryogenic temperatures (45-77 K) in Na and K-Na exchanged zeolites A (LTA structural code) measured by co-adsorption technique. These values are systematically compared with Ideal Adsorbed Solution Theory (IAST) predictions based on the single gas adsorption isotherms. For NaA zeolite the evolution of the selectivity as a function of total pressure and gas mixture composition at 77 K shows ideal behavior. In contrast, as temperature decreases, D2/H2 selectivity rises exponentially and its values can no longer be predicted by IAST. We found that in these conditions the evolution of the selectivity can be described by a si…

research product

One-stage periodical anodic-cathodic double pulse deposition of nanocomposite materials. Application to Prussian Blue/polypyrrole film coated electrodes

Abstract Novel electrochemical method of one-stage deposition of composite films on electrode surface has been proposed. The procedure includes a periodical series of potentiostatic or galvanostatic pulses of alternative polarity imposed at electrode in contact with a mixture of two solute precursors, one of which is able to generate a solid phase under its electrooxidation while another one is transformed into another solid phase under its electroreduction. Parameters of anodic and cathodic pulses (potential or current, pulse duration) may be chosen independently from one another, their relation allows one to vary the relative contents of components in the deposited composite. Thickness of…

research product

Mechanism of water adsorption in the large pore form of the gallium-based MIL-53 metal-organic framework

Abstract Water adsorption in the large pore ( lp_empty ) form of Ga-MIL-53 was studied by TGA, DSC and in situ XRD and FTIR at 298 K. The large pore form can be stabilized at room temperature after activation under vacuum at 553 K. The isotherm of water adsorption in this large pore form (pore dimensions: 1.67 × 1.33 nm) is very similar to that measured on the narrow pore ( np_empty ) form (pore dimensions: 1.97 × 0.76 nm). Such a similarity is rather unusual given that the pore sizes of these two phases are very different. In order to understand the origin of this effect in situ XRD and FTIR measurements were particularly helpful. It was found that the adsorption of even small amount of wa…

research product

Water Adsorption in Flexible Gallium-Based MIL-53 Metal–Organic Framework

Understanding the adsorption of water in metal–organic frameworks (MOF), and particularly in soft porous crystals, is a crucial prerequisite before considering MOFs for industrial applications. We report here a joint experimental and theoretical study on the behavior of a gallium-based breathing MOF, Ga-MIL-53, upon water adsorption. By looking at the energetics and thermodynamics of Ga-MIL-53, we demonstrate why it behaves differently from its sibling Al-MIL-53, showing a different phase at room temperature (a nonporous phase) and the presence of a hydrated narrow-pore structure at gas saturation pressure. Moreover, we present a complete water vapor pressure vs temperature phase diagram of…

research product

Superior Fischer-Tropsch performance of uniform cobalt nanoparticles deposited into mesoporous SiC

Electrochemically-derived well-crystalline mesoporous silicon carbide (pSiC) was used as a host for cobalt nanoparticles to demonstrate superior catalytic performance during the CO hydrogenation according to Fischer-Tropsch. Colloidal Co nanoparticles (9 ± 0.4 nm) were prepared independently using colloidal recipes before incorporating them into pSiC and, for comparison purposes, into commercially available silica (Davisil) as well as foam-like MCF-17 supports. The Co/pSiC catalyst demonstrated the highest (per unit mass) catalytic activity of 117 µmol.g(CO)-1.g-1(Co).s-1 at 220 °C which was larger by about one order of magnitude as compared to both silica supported cobalt catalysts. Furthe…

research product

2.8NiO–H1.8Ni0.6(OH)MoO4—Novel nanocomposite material for the reactive adsorption of sulfur-containing molecules at moderate temperature

Abstract It has been found that a poorly crystalline green precipitate that forms in boiling ammonia solution of Ni(NO 3 ) 2 and (NH 4 ) 6 Mo 7 O 24 yields on annealing a Ni-rich material (Ni/Mo = 3.4) containing slit shaped mesopores and exhibiting the BET surface area of 230 m 2 /g. Characterization of the material by TGA, XRD, TEM, SEM, and EXAFS allowed to determine that it is a nanocomposite consisting of Ni–Mo (hydro)oxide layers H 1.8 Ni 0.6 (OH)MoO 4 which are pillared by NiO nanoparticles ( D  = 3 nm). The structure of the layers appears to be similar to that found in the previously described crystalline molybdate (NH 4 )HNi 2 (OH) 2 (MoO 4 ) 2 prepared in the similar conditions. T…

research product

Mesoporous Silica-Confined Manganese Oxide Nanoparticles as Highly Efficient Catalysts for the Low-Temperature Elimination of Formaldehyde

research product

Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO.

Abstract Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO was studied by thermal gravimetric analysis at 280–360 °C under 5–40 mbar of thiophene in H2. In the case of Ni/SiO2 the interaction proceeds in two steps: a rapid surface reaction is followed by a slower bulk transformation into Ni3S2. Maximum Ni conversion depends on reaction conditions and observed conversion profiles can be described by an exponential equation corresponding to a reaction of first order relatively to both sulfidable Ni amount and thiophene. The interaction between Ni/ZnO and thiophene proceeds in a rather different manner. A rapid increase of weight, similar to the first stage observed on Ni/SiO2, i…

research product

Enhanced quantum sieving of hydrogen isotopes via molecular rearrangement of the adsorbed phase in chabazite

Coadsorption experiments reveal an unexpected increase of the D2/H2 selectivity with loading in pure silica chabazite at 47 K. This effect is correlated with the appearance of a step in the adsorption isotherms of H2 and D2. Grand canonical Monte Carlo simulations show that this phenomenon is related to a molecular rearrangement of the adsorbed phase induced by its strong confinement. In the case of a H2 and D2 mixture, this rearrangement favors the adsorption of D2 having a smaller size due to quantum effects.

research product

Hierarchical Beta zeolites as catalysts in a one-pot three-component cascade Prins–Friedel–Crafts reaction

Hierarchical Beta zeolites obtained from concentrated reaction mixtures (H2O/Si = 2.5–7.0) in the presence of CTAB and their conventional and nanosponge analogues were investigated in a one-pot cascade environmentally friendly Prins–Friedel–Crafts reaction of butyraldehyde with 3-buten-1-ol and anisole under mild conditions (60 °C). The highest yields of the desired products with 4-aryltetrahydropyran structure were achieved when using hierarchical zeolites characterised by well-developed mesoporosity (facilitating the formation of bulky intermediates and products) and by an increased fraction of highly accessible (evaluated by TTBPy method) medium-strength Bronsted acid sites. Acid sites w…

research product

D2/H2 adsorption selectivity on FAU zeolites at 77.4 K: Influence of Si/Al ratio and cationic composition

Abstract Equilibrium D2/H2 adsorption selectivity was determined at 77.4 K below 1000 hPa for a series of FAU type zeolites X exchanged with different cations (Li+, Na+, K+, Mg2+, Ca2+, Ba2+ and Mn2+). In addition NaY, DAY (dealuminated Y) and pure silica CHA and MFI zeolites were studied. Two experimental approaches were used to determine the D2/H2 adsorption selectivity: direct determination at the thermodynamic equilibrium from manometric coadsorption experiments and calculations by Ideal Adsorbed Solution Theory (IAST) from single gas adsorption isotherms. While these two approaches are not in quantitative agreement, they reveal similar trends. At low loading (  MnX > LiX > CaX ≈ NaX > …

research product

CCDC 1061553: Experimental Crystal Structure Determination

Related Article: Oksana Toma, Nicolas Mercier, Magali Allain, Abdel Adi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2015|Inorg.Chem.|54|8923|doi:10.1021/acs.inorgchem.5b00975

research product

CCDC 1534485: Experimental Crystal Structure Determination

Related Article: Maxime Leroux, Nicolas Mercier, Jean-Pierre Bellat, Guy Weber, Igor Bezverkhyy|2017|Cryst.Growth Des.|17|2828|doi:10.1021/acs.cgd.7b00279

research product

CCDC 1061554: Experimental Crystal Structure Determination

Related Article: Oksana Toma, Nicolas Mercier, Magali Allain, Abdel Adi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2015|Inorg.Chem.|54|8923|doi:10.1021/acs.inorgchem.5b00975

research product

CCDC 1061551: Experimental Crystal Structure Determination

Related Article: Oksana Toma, Nicolas Mercier, Magali Allain, Abdel Adi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2015|Inorg.Chem.|54|8923|doi:10.1021/acs.inorgchem.5b00975

research product

CCDC 1061552: Experimental Crystal Structure Determination

Related Article: Oksana Toma, Nicolas Mercier, Magali Allain, Abdel Adi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2015|Inorg.Chem.|54|8923|doi:10.1021/acs.inorgchem.5b00975

research product

CCDC 1534001: Experimental Crystal Structure Determination

Related Article: Maxime Leroux, Nicolas Mercier, Jean-Pierre Bellat, Guy Weber, Igor Bezverkhyy|2017|Cryst.Growth Des.|17|2828|doi:10.1021/acs.cgd.7b00279

research product

CCDC 1571877: Experimental Crystal Structure Determination

Related Article: Antonin Leblanc, Nicolas Mercier, Magali Allain, Marie-Claire Dul, Guy Weber, Nicolas Geoffroy, Jean-Pierre Bellat, Igor Bezverkhyy|2017|Dalton Trans.|46|15666|doi:10.1039/C7DT03541A

research product

CCDC 1473082: Experimental Crystal Structure Determination

Related Article: Maxime Leroux, Nicolas Mercier, Magali Allain, Marie-Claire Dul, Jens Dittmer, Abdel Hadi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2016|Inorg.Chem.|55|8587|doi:10.1021/acs.inorgchem.6b01119

research product

CCDC 1534483: Experimental Crystal Structure Determination

Related Article: Maxime Leroux, Nicolas Mercier, Jean-Pierre Bellat, Guy Weber, Igor Bezverkhyy|2017|Cryst.Growth Des.|17|2828|doi:10.1021/acs.cgd.7b00279

research product