0000000000893410
AUTHOR
F. G. Kondev
Global lifetime measurements of highly-deformed and other rotational structures in the a ∼135 light rare-earth region: probing the single-particle motion in a rotating potential
It has been possible, using GAMMASPHERE plus Microball,to extract differential lifetime measurements free from common systematic errors for over 15 different nuclei (various isotopes of Ce, Pr, Nd, Pm, and Sm) at high spin within a single experiment. This comprehensive study establishes the effective single-particle quadrupole moments in the A~135 light rare-earth region. Detailed comparisons are made with calculations using the self-consistent cranked mean-field theory.
Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb
Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed
Entry distribution of 220Th: A method to determine the fission barrier of an unstable nucleus
First candidates for γ vibrational bands built on the [505]11/2⁻ neutron orbital in odd-A Dy isotopes
Rotational structures have been measured using the Jurogam II and GAMMASPHERE arrays at low spin following the 155Gd(α,2n)157Dy and 148Nd(12C,5n)155Dy reactions at 25 and 65 MeV, respectively. We report high-K bands, which are conjectured to be the first candidates of a Kπ=2+γ vibrational band, built on the [505]11/2− neutron orbital, in both odd-A155,157Dy isotopes. The coupling of the first excited K=0+ states or the so-called β vibrational bands at 661 and 676 keV in 154Dy and 156Dy to the [505]11/2− orbital, to produce a Kπ=11/2− band, was not observed in both 155Dy and 157Dy, respectively. The implication of these findings on the interpretation of the first excited 0+ states in the cor…
Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 87Br, 88Br, and 94Rb
We investigate the decay of 87,88Br and 94Rb using total absorption γ -ray spectroscopy. These important fission products are β-delayed neutron emitters. Our data show considerable βγ intensity, so far unobserved in high-resolution γ -ray spectroscopy, from states at high excitation energy. We also find significant differences with the β intensity that can be deduced from existing measurements of the β spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the r…
Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates
J. L. Taín et al. -- 6 pags., 7 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Search for a 2-quasiparticle high-Kisomer inRf256
The energies of 2-quasiparticle (2-qp) states in heavy shell-stabilized nuclei provide information on the single-particle states that are responsible for the stability of superheavy nuclei. We have calculated the energies of 2-qp states in {sup 256}Rf, which suggest that a long-lived, low-energy 8{sup -} isomer should exist. A search was conducted for this isomer through a calorimetric conversion electron signal, sandwiched in time between implantation of a {sup 256}Rf nucleus and its fission decay, all within the same pixel of a double-sided Si strip detector. A 17(5)-{mu}s isomer was identified. However, its low population, {approx}5(2)% that of the ground state instead of the expected {a…
Fission Barrier of Superheavy Nuclei and Persistence of Shell Effects at High Spin: Cases ofNo254andTh220
We report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of No-254 is measured to be B-f = 6.0 +/- 0.5 MeV at spin 15 (h) over bar and, by extrapolation, B-f = 6.6 +/- 0.9 MeV at spin 0 (h) over bar. This information is deduced from the measured distribution of entry points in the excitation energy versus spin plane. The same measurement is performed for Th-220 and only a lower limit of the fission barrier height can be determined: B-f (I) > 8 MeV. Comparisons with theoretical fission barriers test theories that predict properties of superheavy elements.
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations
Volume: 111 Host publication title: WONDER-2015 Host publication sub-title: 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS Isbn(print): 978-2-7598-1970-6 Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properti…
βdecay of semi-magicCd130: Revision and extension of the level scheme ofIn130
This work was supported by the Spanish Ministerio de Ciencia e Innovacion under contract FPA2011-29854-C04 and the Spanish Ministerio de Economia y Competitividad under Contract No. FPA2014-57196-C5- 4-P, the Generalitat Valenciana (Spain) under Grant No. PROMETEO/2010/101, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2014S1A2A2028636, 2016K1A3A7A09005579), the Priority Centers Research Program in Korea (2009-0093817), OTKA Contract No. K-100835, JSPS KAKENHI (Grant No. 25247045), the European Commission through the Marie Curie Actions call FP7-PEOPLE-2011-IEF under Contract No. 300096, the US Department of Energy, Office of Nuclear Physic…
Gamma/neutron competition above the neutron separation energy in delayed neutron emitters
To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyvaskyla in Finland) using Total Absorption -ray Spectroscopy (TAGS) technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn) and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn. © Owned by the authors, published by EDP Sciences, 2014.
Exploring the stability of super heavy elements: First Measurement of the Fission Barrier of $^{254} $No
The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier. © Owned by the authors, published by EDP Sciences, 2014.
Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra
International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…
Kπ=8−isomers andKπ=2−octupole vibrations inN=150shell-stabilized isotones
Isomers have been populated in {sup 246}Cm and {sup 252}No with quantum numbers K{sup {pi}}=8{sup -}, which decay through K{sup {pi}}=2{sup -} rotational bands built on octupole vibrational states. For N=150 isotones with (even) atomic number Z=94-102, the K{sup {pi}}=8{sup -} and 2{sup -} states have remarkably stable energies, indicating neutron excitations. An exception is a singular minimum in the 2{sup -} energy at Z=98, due to the additional role of proton configurations. The nearly constant energies, in isotones spanning an 18% increase in Coulomb energy near the Coulomb limit, provide a test for theory. The two-quasiparticle K{sup {pi}}=8{sup -} energies are described with single-pa…
Total absorption γ-ray spectroscopy of beta delayed neutron emitters
Preliminary results of the data analysis of the beta decay of 94Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.
Shape evolution in116,118Ru: Triaxiality and transition between the O(6) and U(5) dynamical symmetries
${}^{116}\mathrm{Ru}$ and ${}^{118}\mathrm{Ru}$ have been studied via $\ensuremath{\beta}$-delayed $\ensuremath{\gamma}$-ray spectroscopy of nuclei produced in fragmentation reactions at the Radioactive Ion-Beam Factory (RIBF) facility. Level schemes with positive-parity states up to spin $J=6$ have been constructed. The results have been discussed in terms of the interacting boson model, the algebraic collective model, and total Routhian surfaces. We conclude that the very neutron-rich nuclei still show many features associated with triaxial $\ensuremath{\gamma}$-soft nuclei, represented by the O(6) symmetry, but are approaching a spherical structure, the U(5) symmetry, with increasing neu…
Measurement of fission products β decay properties using a total absorption spectrometer
In a nuclear reactor, the decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyvaskyla with a Total Absorption Spectrometer (TAS) in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented. © Owned by the authors, published by E…
Isomers inPd128andPd126: Evidence for a Robust Shell Closure at the Neutron Magic Number 82 in Exotic Palladium Isotopes
The level structures of the very neutron-rich nuclei $^{128}\mathrm{Pd}$ and $^{126}\mathrm{Pd}$ have been investigated for the first time. In the $r$-process waiting-point nucleus $^{128}\mathrm{Pd}$, a new isomer with a half-life of $5.8(8)\text{ }\text{ }\ensuremath{\mu}\mathrm{s}$ is proposed to have a spin and parity of ${8}^{+}$ and is associated with a maximally aligned configuration arising from the ${g}_{9/2}$ proton subshell with seniority $\ensuremath{\upsilon}=2$. For $^{126}\mathrm{Pd}$, two new isomers have been identified with half-lives of 0.33(4) and $0.44(3)\text{ }\text{ }\ensuremath{\mu}\mathrm{s}$. The yrast ${2}^{+}$ energy is much higher in $^{128}\mathrm{Pd}$ than in…
Determination of beta-delayed neutron emission probability limits of rhodium isotopes by gamma-ray spectroscopy
9 pags., 5 figs., 5 tabs. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK
Proton Shell Evolution below Sn132 : First Measurement of Low-Lying β -Emitting Isomers in Ag123,125
The β-delayed γ-ray spectroscopy of neutron-rich 123;125Ag isotopes is investigated at the Radioactive Isotope Beam Factory of RIKEN and the long-predicted 1/2¯ β-emitting isomers in 123;125Ag are identified for the first time. With the new experimental results, the systematic trend of energy spacing between the lowest 9/2+ and 1/2¯ levels is extended in Ag isotopes up to N = 78, providing a clear signal for the reduction of the Z = 40 subshell gap in Ag towards N = 82. Shellmodel calculations with the state-of-the-art VMU plus M3Y spin-orbit interaction give a satisfactory description of the low-lying states in 123;125Ag. The tensor force is found to play a crucial role in the evolution of…
Structure of the Odd-A, Shell-Stabilized NucleusNo102253
In-beam {gamma}-ray spectroscopic measurements have been made on {sub 102}{sup 253}No. A single rotational band was identified up to a probable spin of 39/2({Dirac_h}/2{pi}), which is assigned to the 7/2{sup +}[624] Nilsson configuration. The bandhead energy and the moment of inertia provide discriminating tests of contemporary models of the heaviest nuclei. Novel methods were required to interpret the sparse data set associated with cross sections of around 50 nb. These methods included comparisons of experimental and simulated spectra, as well as testing for evidence of a rotational band in the {gamma}{gamma} matrix.
Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure
Abstract An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of 87,88 Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.
β-Decay Half-Lives of 110 Neutron-Rich Nuclei across theN=82Shell Gap: Implications for the Mechanism and Universality of the AstrophysicalrProcess
The $\ensuremath{\beta}$-decay half-lives of 110 neutron-rich isotopes of the elements from $_{37}\mathrm{Rb}$ to $_{50}\mathrm{Sn}$ were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for $r$-process calculations and reinforce the notion that the second ($A\ensuremath{\approx}130$) and the rare-earth-element ($A\ensuremath{\approx}160$) abundance peaks may result from the freeze-out of an $(n,\ensuremath{\gamma})\ensuremath{\rightleftarrows}(\ensuremath{\gamma},n)$ equilibrium. In such an equilibrium, the new half-lives are important factors determining t…
Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in Hg-184,Hg-186 and two-state mixing calculations
Abstract: The neutron-deficient mercury isotopes, 184 , 186 Hg, were studied with the recoil distance Doppler-shift method using the Gammasphere array and the K ̈ oln plunger device. The differential decay curve method was employed to determine the lifetimes of the yrast states in 184 , 186 Hg. An improvement on previously measured values of yrast states up to 8 + is presented as well as first values for the 9 3 state in 184 Hg and 10 + state in 186 Hg. B ( E 2) values are calculated and compared to a two-state mixing model which utilizes the variable moment of inertia model, allowing for extraction of spin-dependent mixing strengths and amplitudes. peerReviewed
Observation of a $\gamma$-decaying millisecond isomeric state in $^{128}$Cd$_{80}$
A. Jungclaus et al. -- 6 pags., 5 figs., 2 tabs. -- Open Access funded by Creative Commons Atribution Licence 4.0
Enhanced Gamma-Ray Emission from Neutron Unbound States Populated in Beta Decay
International audience; Total absorption spectroscopy was used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in 87,88Br and 94Rb. Accurate results were obtained thanks to a careful control of systematic errors. An unexpectedly large gamma intensity was observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy was compared to Hauser-Feshbach model calculations. For 87Br and 88Br the gamma branching reaches 57% and 20% respectively, and could be explained as a nuclear structure effect. So…
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra Determination
8 pags., 3 figs., 1 tab. ; Presented at the XXXIV Mazurian Lakes Conference on Physics, Piaski, Poland, September 6–13, 2015.
Total absorption γ -ray spectroscopy of the β -delayed neutron emitters Br87 , Br88 , and Rb94
We investigate the decay of 87,88Br and 94Rb using total absorption γ -ray spectroscopy. These important fission products are β-delayed neutron emitters. Our data show considerable βγ intensity, so far unobserved in high-resolution γ -ray spectroscopy, from states at high excitation energy. We also find significant differences with the β intensity that can be deduced from existing measurements of the β spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the r…
1p3/2Proton-Hole State inSn132and the Shell Structure AlongN=82
5 pags. ; 3 figs. ; PACS numbers: 23.40.-s, 21.10.Pc, 27.60.+j, 21.60.Cs ; Taprogge, J., et al.
97/37 Rb 60 : The Cornerstone of the Region of Deformation around A∼100
Excited states of the neutron-rich nuclei 97,99Rb were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of 97Rb as being built on the πg9/2 [431] 3/2+ Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N=60 and rotational bands above. The present study defines the limits of the deformed region around A∼100 and indicates that the deformation of 97Rb is essentially the same as that observed well inside the deformed regi…
Monopole-Driven Shell Evolution below the Doubly Magic Nucleus Sn132 Explored with the Long-Lived Isomer in Pd126
A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, β decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energ…
r Process (n, γ) Rate Constraints from the γ Emission of Neutron Unbound States in β decay
Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γγ emission from neutron-unbound states populated in the ββ-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission a constraint on the (n, γγ) cross section for highly unstable neutron-rich nuclei can be deduced. A surprisingly large γγ branching was observed for a number of isotopes which might indicate the need to increase by a large factor the Hauser-Feshbach (n, γγ) cross-section estimates that impact on r process abundance calculations. peerReviewed
Total Absorption Spectroscopy Study ofRb92Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape
The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.
Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements inHg184,186and two-state mixing calculations
The neutron-deficient mercury isotopes, $^{184,186}$Hg, were studied with the Recoil Distance Doppler Shift (RDDS) method using the Gammasphere array and the Koln Plunger device. The Differential Decay Curve Method (DDCM) was employed to determine the lifetimes of the yrast states in $^{184,186}$Hg. An improvement on previously measured values of yrast states up to $8^{+}$ is presented as well as first values for the $9_{3}$ state in $^{184}$Hg and $10^{+}$ state in $^{186}$Hg. $B(E2)$ values are calculated and compared to a two-state mixing model which utilizes the variable moment of inertia (VMI) model, allowing for extraction of spin-dependent mixing strengths and amplitudes.
Stability and synthesis of superheavy elements: Fighting the battle against fission – example of $^{254}$No
International audience; Superheavy nuclei exist solely due to quantum shell effects,which create a pocket in the potential-energy surface of the nucleus, thusproviding a barrier against spontaneous fission. Determining the height ofthe fission barrier and its angular-momentum dependence is important toquantify the role that microscopic shell corrections play in enhancing andextending the limits of nuclear stability. In this talk, the first measurement ofa fission barrier in the very heavy nucleus 254No will be presented.
New isomers in $^{125}$Pd$_{79}$ and $^{127}$Pd$_{81}$: Competing proton and neutron excitations in neutron-rich palladium nuclides towards the $N = 82$ shell closure
The neutron-rich isotopes of palladium have attracted considerable interest in terms of the evolution of the N=82 neutron shell closure and its influence on the r-process nucleosynthesis. In this Letter, we present the first spectroscopic information on the excited states in Pd and Pd studied using the EURICA γ-ray spectrometer, following production via in-flight fission of a high-intensity U beam at the RIBF facility. New isomeric states with half-lives of 144(4) ns and 39(6) μs have been assigned spins and parities of (23/2 ) and (19/2 ) in Pd and Pd, respectively. The observed level properties are compared to a shell-model calculation, suggesting the competition between proton excitation…
Nuclear Data Sheets for A=188
Abstract Evaluated nuclear structure and decay data for all nuclei with mass number A=188 (Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po) are presented. The experimental data are compiled and evaluated, and best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by Balraj Singh (2002Si10), published in Nuclear Data Sheets 95, 387 (2002). The gamma-ray transition probabilities were calculated using the ENSDF analysis program ruler ( www-nds.iaea.org/public/ensdf_pgm/ ). However, the…
Bridging the nuclear structure gap between stable and super heavy nuclei
International audience; Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapo…
Enhancedγ-Ray Emission from Neutron Unbound States Populated inβDecay
Total absorption spectroscopy is used to investigate the β-decay intensity to states above the neutron separation energy followed by γ-ray emission in (87,88)Br and (94)Rb. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large γ intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The γ branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For (87)Br and (88)Br the γ branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daug…
Decay and Fission Hindrance of Two- and Four-QuasiparticleKIsomers inRf254
Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. …
Impact of shell evolution on Gamow-Teller β decay from a high-spin long-lived isomer in 127Ag
6 pags., 4 figs., 2 tabs.
Total absorption spectroscopy study of the β decay of Br86 and Rb91
The beta decays of 86Br and 91Rb have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the IGISOL facility in Jyvaskyla and further purified using the JYFLTRAP. 86Br and 91Rb are considered high priority contributors to the decay heat in reactors. In addition 91Rb was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decay was well known from high-resolution measurements. Our results shows that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized.