0000000000896376

AUTHOR

E. Rocco

showing 50 related works from this author

Measurement of the Soft-Drop Jet Mass in pp Collisions at s=13  TeV with the ATLAS Detector

2018

Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by the ...

Quantum chromodynamicsPhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsAtlas detectorDrop (liquid)Physics beyond the Standard ModelHadronGeneral Physics and AstronomyObservable01 natural sciences0103 physical sciencesSubstructureHigh Energy Physics::Experiment010306 general physicsPhysical Review Letters
researchProduct

Probing the Quantum Interference between Singly and Doubly Resonant Top-Quark Production in pp Collisions at s=13  TeV with the ATLAS Detector

2018

This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a W boson and a b-quark are significant. Events with exactly two leptons (ee, μμ, or eμ) and two b-tagged jets that satisfy a multiparticle invariant mass requirement are selected from 36.1  fb^{-1} of proton-proton collision data taken at sqrt[s]=13  TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are signifi…

PhysicsParticle physicsTop quarkLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyCollision01 natural sciencesPair productionPhase space0103 physical sciencesInvariant mass010306 general physicsLeptonBosonPhysical Review Letters
researchProduct

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

2012

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong depende…

QuarkNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectHadronFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetryCOMPASSSIDISspin asymmetriesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Compass0103 physical sciences010306 general physicsNuclear Experimentmedia_commonPhysics[PHYS]Physics [physics]Sivers asymmetriesLarge Hadron Colliderta114010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDeep inelastic scatteringCOMPASS; SIDIS; spin asymmetries; Sivers asymmetriesTransverse planeDistribution functionHigh Energy Physics::ExperimentCOMPASS SIDIS TMD Sivers asymmetryParticle Physics - Experiment
researchProduct

Search for exclusive photoproduction ofZc±(3900) at COMPASS

2015

A search for the exclusive production of the Z(c)(+/-)(3900) hadron by virtual photons has been performed in the channel Z(c)(+/-)(3900). J/Psi pi(+/-). The data cover the range from 7GeV to 19GeV in the centre-of- mass energy of the photon-nucleon system. The full set of the COMPASS data set collected with a muon beam between 2002 and 2011 has been used. An upper limit for the ratio BR(Z(c)(+/-)(3900)-> J/Psi pi(+/-)) x sigma(gamma N) -> Z(c)(+/-)(3900) N/sigma gamma N -> J/Psi N 3.7 x10(-3) has been established at the confidence level of90%. (C) 2015 The Authors. Published by Elsevier B.V.

PhysicsNuclear and High Energy PhysicsParticle physicsMuonCompassHadronAnalytical chemistrySigmaHigh Energy Physics::ExperimentProduction (computer science)TetraquarkZc(3900)Range (computer programming)Physics Letters B
researchProduct

Read-out electronics for fast photon detection with COMPASS RICH-1

2008

A new read-out electronics system has been developed for the fast photon detection of the central region of the COMPASS RICH-1. The project is based on multi-anode photomultipliers read out by the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1 TDC chip characterised by high time resolution. The system has been designed taking into account the high photon flux in the central region of the detector and the high rate requirement of the COMPASS experiment. The system is described in detail together with the measured performances. The new electronics system has been installed and used for the 2006 data taking; it entirely fulfils the expected performances.

PhysicsNuclear and High Energy PhysicsPhotomultiplierbusiness.industryDetectorChipParticle identificationOpticsCompassCOMPASS experimentElectronicsbusinessInstrumentationPhoton detection
researchProduct

Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ → 4ℓ and ZZ → 2ℓ2ν final states with the ATLAS detector

2018

A measurement of off-shell Higgs boson production in the and decay channels, where ℓ stands for either an electron or a muon, is performed using data from proton–proton collisions at a centre-of-mass energy of TeV. The data were collected by the ATLAS experiment in 2015 and 2016 at the Large Hadron Collider, and they correspond to an integrated luminosity of . An observed (expected) upper limit on the off-shell Higgs signal strength, defined as the event yield normalised to the Standard Model prediction, of 3.8 (3.4) is obtained at 95% confidence level (CL). Assuming the ratio of the Higgs boson couplings to the Standard Model predictions is independent of the momentum transfer of the Higgs…

13000 GeV-cmsoff-shell [Higgs particle]Electronwidth [Higgs particle]01 natural sciences7. Clean energySubatomär fysikHiggs particle: hadroproductionscattering [p p]Z0: pair productionCollisionsпротон-протонные столкновенияQCupper limit [width]Large Hadron Colliderlcsh:QC1-999:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]pair production [Z0]muon: pair productionCERN LHC Collgluon gluon: fusionHiggs bosonХиггса бозонS126Wcolliding beams [p p]p p: scatteringmass spectrum: (4lepton)Ciências Naturais::Ciências Físicaspair production [neutrino]HIGH ENERGY PHYSICSSEARCHddc:530pair production [electron]010306 general physicsParticle PhysicsParticle Physics LHC ATLASMuonHiggs particle: couplingScience & TechnologyATLAS detector010308 nuclear & particles physics(4lepton) [mass spectrum]HIGGSExperimental High Energy PhysicsPARTON DISTRIBUTIONS; SEARCH; PARTICLE; DECAY; MASSATLAS детекторp p: colliding beamslcsh:PhysicsHiggs particle: widthБольшой адронный коллайдерfusion [gluon gluon]Higgs particle: decaydilepton: mass spectrumAtlas detectorCiencias FísicasS126SZZmass spectrum [dilepton]High Energy Physics - Experiment//purl.org/becyt/ford/1 [https]electron: pair productionSignal strengthwidth: upper limitSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Physicsproton–proton collisionsneutrino: pair productionATLAS experimentMomentum transferSettore FIS/01 - Fisica Sperimentaledecay [Higgs particle]ATLASLHCPARTICLEParticle Physics - ExperimentCIENCIAS NATURALES Y EXACTASjetsParticle physicsNuclear and High Energy Physicscoupling [Higgs particle]530 PhysicsHiggs boson:Ciências Físicas [Ciências Naturais]MASSFísica de Partículas y CamposComputer Science::Digital Libraries0103 physical sciencespair production [muon]Ciencias ExactasHiggs particle: off-shellhep-exHigh Energy Physics::Phenomenology:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Física//purl.org/becyt/ford/1.3 [https]leptonic decay [Z0]PARTON DISTRIBUTIONSZ0: leptonic decayhadroproduction [Higgs particle]ZZ → 4ℓHigh Energy Physics::ExperimentHadron-hadron collisionsDECAYZ Z → 2ℓ2νexperimental results
researchProduct

Spin alignment and violation of the OZI rule in exclusive ω and ϕ production in pp collisions

2014

Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons…

Particle physicsNuclear and High Energy PhysicsOZI rule testPOLARIZATIONProtonMesonPROTON-PROTON COLLISIONS; LOW-ENERGY PHOTOPRODUCTION; ZWEIG-IIZUKA RULE; MESON PRODUCTION; EXPERIMENTAL TESTS; SELECTION RULE; POLARIZATION; NUCLEON; PIONIsoscalarPROTON-PROTON COLLISIONSMESON PRODUCTIONNuclear TheoryEXPERIMENTAL TESTS530OZI ruleHigh Energy Physics - ExperimentNuclear physicstestPIONInvariant masslcsh:Nuclear and particle physics. Atomic energy. RadioactivityLOW-ENERGY PHOTOPRODUCTIONVector mesonNuclear ExperimentNUCLEONNuclear ExperimentSpin-½PhysicsHigh Energy Physics::PhenomenologySELECTION RULEBaryonOZI ruleZWEIG-IIZUKA RULElcsh:QC770-798High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering

2012

First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication …

Nuclear and High Energy PhysicsParticle physicsCOMPASS; SIDIS; two hadron azimuthal asymmetries; transversityHadronNuclear TheoryFOS: Physical sciencesCOMPASSSIDIS01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences010306 general physicsNuclear ExperimenttransversityPhysicsLarge Hadron ColliderMuonSpectrometerta114010308 nuclear & particles physicsScatteringtwo hadron azimuthal asymmetrietwo hadron azimuthal asymmetriesHigh Energy Physics::PhenomenologyDeep inelastic scatteringPair productionDistribution functionHigh Energy Physics::ExperimentParticle Physics - ExperimentPhysics Letters B
researchProduct

Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb–Pb collisions at sNN=2.76 TeV

2014

The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, signi…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsTransverse momentumModification factorRapidityCentralityLower energyCharm quarkPhysics Letters B
researchProduct

The fast photon detection system of COMPASS RICH-1

2007

Abstract A fast photon detection system has been built for the upgrade of COMPASS RICH-1, the large size gaseous RICH detector in use at the COMPASS Experiment at the CERN SPS since 2001. The photon detectors of the central region have been replaced by a new system based on multi-anode photomultipliers coupled to individual fused silica lens telescopes and a fast readout electronics system, while in the outer region the existing MWPCs with CsI photocathodes have been equipped with a new readout system, based on the APV chip. RICH-1 has been successfully operated in its upgraded version during the 2006 run. We report on the upgrade design and construction, and on the preliminary characteriza…

PhotomultiplierNuclear and High Energy PhysicsPhotonMulti-anode photomultiplier tubesPhysics::Instrumentation and DetectorsUV lensesCOMPASS; Multi-anode photomultiplier tubes; Photon detection; RICH; UV lenses; Nuclear and High Energy Physics; InstrumentationCOMPASSlaw.inventionFAST-RICH; DEUTERON; READOUT; DESIGNOpticsDESIGNlawMulti-anode photomultiplier tubeCompassCOMPASS experimentRICHInstrumentationNuclear and High Energy PhysicPhysicsLarge Hadron Colliderbusiness.industryDetectorREADOUTDEUTERONLens (optics)UpgradePhoton detectionFAST-RICHUV lenseHigh Energy Physics::Experimentbusiness
researchProduct

Pattern recognition and PID for COMPASS RICH-1

2008

A package for pattern recognition and PID by COMPASS RICH-1 has been developed and used for the analysis of COMPASS data collected in the years 2002 to 2004, and 2006-2007 with the upgraded RICH-1 photon detectors. It has allowed the full characterization of the detector in the starting version and in the upgraded one, as well as the PID for physics results. We report about the package structure and algorithms, and the detector characterization and PID results.

PhysicsNuclear and High Energy PhysicsPhotomultiplierPhysics - Instrumentation and Detectorsbusiness.industryPhoton detectorDetectorPID controllerFOS: Physical sciencesPattern recognitionInstrumentation and Detectors (physics.ins-det)Photon yieldParticle identificationHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)CompassPattern recognition (psychology)Artificial intelligenceDetectors and Experimental TechniquesbusinessInstrumentation
researchProduct

Search for Resonant and Nonresonant Higgs Boson Pair Production in the bb¯τ+τ− Decay Channel in pp Collisions at s=13  TeV with the ATLAS Detector

2018

A search for resonant and nonresonant pair production of Higgs bosons in the b (b) over bar tau(+)tau(-) final state is presented. The search uses 36.1 fb(-1) of pp collision data with root s = 13 ...

PhysicsParticle physicsPhoton010308 nuclear & particles physicsBar (music)High Energy Physics::PhenomenologyATLAS experimentRoot (chord)General Physics and Astronomy01 natural sciencesmedicine.anatomical_structurePair productionAtlas (anatomy)0103 physical sciencesHiggs bosonmedicine010306 general physicsBosonPhysical Review Letters
researchProduct

Particle identification with COMPASS RICH-1

2011

International audience; RICH-1 is a large size RICH detector in operation at the COMPASS experiment since 2001 and recently upgraded implementing a new photon detection system with increased performance.A dedicated software package has been developed to perform RICH-1 data reduction, pattern recognition and particle identification as well as a number of accessory tasks for detector studies.The software package, the algorithms implemented and the detector characterisation and performance are reported in detail.

Nuclear and High Energy PhysicsPhysics::Instrumentation and Detectors[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesCOMPASSParticle identificationParticle identificationCompass0103 physical sciencesCOMPASS experimentComputer vision010306 general physicsInstrumentationRICHPhysics010308 nuclear & particles physicsbusiness.industryDetectorSoftware packageParticle identification; COMPASS; Likelihood algorithmsPattern recognition (psychology)High Energy Physics::ExperimentArtificial intelligenceLikelihood algorithmsbusinessPhoton detectionData reduction
researchProduct

The spin structure functiong1pof the proton and a test of the Bjorken sum rule

2016

New results for the double spin asymmetry A(1)(p) and the proton longitudinal spin structure function g(1)(p) are presented. They were obtained by the COMPASS Collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH3 target. The data were collected in 2011 and complement those recorded in 2007 at 160 GeV, in particular at lower values of x. They improve the statistical precision of g(1)(p)(x) by about a factor of two in the region x less than or similar to 0.02. A next-to-leading order QCD fit to the g(1) world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, Delta Sigma, ranging from 0.26 to 0.36, and to a…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonProton010308 nuclear & particles physicsDeep inelastic scattering01 natural sciencesHelicityNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentSum rule in quantum mechanics010306 general physicsNucleonSpin-½Physics Letters B
researchProduct

The fast readout system for the MAPMTs of COMPASS RICH-1

2007

A fast readout system for the upgrade of the COMPASS RICH detector has been developed and successfully used for data taking in 2006 and 2007. The new readout system for the multi-anode PMTs in the central part of the photon detector of the RICH is based on the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1-TDC chip characterized by high-resolution. The readout electronics has been designed taking into account the high photon flux in the central part of the detector and the requirement to run at high trigger rates of up to 100 kHz with negligible dead-time. The system is designed as a very compact setup and is mounted directly behind the multi-anode photomultiplie…

PhysicsNuclear and High Energy PhysicsPhotomultiplierPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsbusiness.industryDetectorPhoton fluxFOS: Physical sciencesReadout electronicsInstrumentation and Detectors (physics.ins-det)ChipParticle identificationUpgradeOpticsCompassDetectors and Experimental TechniquesbusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Leading order determination of the gluon polarisation from DIS events with high-pThadron pairs

2013

We present a determination of the gluon polarisation Delta g/g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with Q(2) > 1 (GeV/c)(2) including a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised (LiD)-Li-6 target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction x(g) covering the range 0.04 < x(g) < 0.27. The values obtained at leading order in QCD do not show any significant dependence on x(g). Their average is Delta g/g = 0.125 +/- 0.060 (stat.) +/- 0.063 (sy…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonProton010308 nuclear & particles physicsHadronDeep inelastic scattering01 natural sciencesGluonNuclear physics0103 physical sciencesCOMPASS experimentHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonPhysics Letters B
researchProduct

Exclusive muoproduction on transversely polarised protons and deuterons

2012

The transverse target spin azimuthal asymmetry A(UT)(sin(phi-phi s)) in hard exclusive production of rho(0) mesons was measured at COMPASS by scattering 160 GeV/c muons off transversely polarised protons and deuterons. The measured asymmetry is sensitive to the nucleon helicity-flip generalised parton distributions E-q, which are related to the orbital angular momentum of quarks in the nucleon. The Q(2), x-B-j and p(T)(2) dependence of A(UT)(sin(phi-phi s)) is presented in a wide kinematic range: 1 (GeV/c)(2) < Q(2) < 10 (GeV/c)(2), 0.003 < xB(j) < 0.3 and 0.05 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for protons or 0.10 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for deuterons. Results for deuteron…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsAngular momentumMuonMeson010308 nuclear & particles physicsmedia_common.quotation_subjectNuclear TheoryParton01 natural sciencesAsymmetryNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonmedia_commonSpin-½Nuclear Physics B
researchProduct

Observation of a New Narrow Axial-Vector Mesona1(1420)

2015

The COMPASS Collaboration at CERN has measured diffractive dissociation of 190  GeV/c pions into the π(-)π(-)π(+) final state using a stationary hydrogen target. A partial-wave analysis (PWA) was performed in bins of 3π mass and four-momentum transfer using the isobar model and the so far largest PWA model consisting of 88 waves. A narrow peak is observed in the f0(980)π channel with spin, parity and C-parity quantum numbers J(PC)=1(++). We present a resonance-model study of a subset of the spin-density matrix selecting 3π states with J(PC)=2(++) and 4(++) decaying into ρ(770)π and with J(PC)=1(++) decaying into f0(980)π. We identify a new a1 meson with mass (1414(-13)(+15))  MeV/c2 and wid…

PhysicsQuantum chromodynamicsMeson010308 nuclear & particles physicsPartial wave analysisGeneral Physics and AstronomyParity (physics)Quantum number01 natural sciencesNuclear physicsPion0103 physical sciencesIsobarHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPseudovectorPhysical Review Letters
researchProduct

Latest Frontier Technology and Design of the ATLAS Calorimeter Trigger Board Dedicated to Jet Identification for the LHC Run 3

2016

To cope with the enhanced luminosity of the beam delivered by the Large Hadron Collider (LHC) in 2020, the “A Toroidal LHC ApparatuS” (ATLAS) experiment has planned a major upgrade. As part of this, the trigger at Level1 based on calorimeter data will be upgraded to exploit fine-granularity readout using a new system of Feature Extractors, which each use different physics objects for the trigger selection. The article focusses on the jet Feature EXtractor (jFEX) prototype, one of the three types of Feature Extractors. Up to 2 TB/s have to be processed to provide jet identification (including large area jets) and measurements of global variables within few hundred nanoseconds latency budget.…

EngineeringLarge Hadron ColliderCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industryPhysics::Instrumentation and DetectorsElectrical engineeringLatency (audio)01 natural sciencesSignal030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineUpgrade0103 physical sciencesMulti-gigabit transceiverSignal integritybusinessField-programmable gate arrayParticle Physics - Experiment
researchProduct

The COMPASS Setup for Physics with Hadron Beams

2015

The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successful…

Particle physicsCalorimetry; Data acquisition and reconstruction; Fixed target experiment for hadron spectroscopy; Front-end electronics; Micro Pattern detectors and Drift chambers; Monte-Carlo simulation; RICH; Instrumentation; Nuclear and High Energy PhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronFOS: Physical sciencesMonte-Carlo simulation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Calorimetryacquisition and reconstruction01 natural sciences7. Clean energyMicro Pattern detectors and Drift chambersHigh Energy Physics - ExperimentNuclear physicsMomentumHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopy0103 physical sciencesDetectors and Experimental Techniques010306 general physicsRICHInstrumentationFixed target experiment for hadron spectroscopyPhysicsDataLarge Hadron Collider010308 nuclear & particles physicsMicroMegas detectorFront-end electronicsInstrumentation and Detectors (physics.ins-det)Micro Pattern detectorsand Drift chambersData acquisition and reconstructionGas electron multiplierPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - ExperimentBeam (structure)Front-end electronicMicro Pattern detectors and Drift chamber
researchProduct

Particle identification with the fast COMPASS RICH-1 detector

2009

International audience; A new photon detection system for the COMPASS RICH-1 detector has been designed and installed. In the central region, the project is based on multi-anode photo-multiplier technology accompanied by charge sensitive, high resolution and dead-time free time digitization. In the outer area, only the readout electronics for the existing photon detectors has been replaced. Details on the detector upgrade and its performance are presented.

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsPhoton detectorMulti-anode photo-multiplierComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHigh resolution[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesCOMPASSParticle identificationTDCParticle identificationOpticsCompass0103 physical sciences010306 general physicsInstrumentationRICHPhysics010308 nuclear & particles physicsbusiness.industryDetectorCharge (physics)Front-end electronicsUpgradeCOMPASS; RICH; Multi-anode photo-multiplier; Particle identification; Front-end electronics; TDCHigh Energy Physics::ExperimentbusinessPhoton detectionFront-end electronic
researchProduct

The experience of building and operating COMPASS RICH-1

2010

COMPASS RICH-1 is a large size gaseous Imaging Cherenkov Detector providing hadron identification in the range from 3 to 55 GeV/c, in the wide acceptance spectrometer of the COMPASS Experiment at CERN SPS. It uses a 3 m long C(4)F(10) radiator, a 21 m(2) large VUV mirror surface and two kinds of photon detectors: MAPMTs and MWPCs with CsI photocathodes, covering a total of 5.5 m(2). It is in operation since 2002 and its performance has increased in time thanks to progressive optimization and mostly to a major upgrade which was implemented in 2006. The main characteristics of COMPASS RICH-1 components are described and some specific aspects related to the radiator gas system, the mirror alig…

Nuclear and High Energy PhysicsCherenkov detectorPhysics::Instrumentation and Detectors[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]COMPASS01 natural sciencesParticle identificationParticle identificationlaw.inventionNuclear physicsCOMPASS; CsI; MAPMT; Photon detection; PID; RICH; Instrumentation; Nuclear and High Energy PhysicsOpticslawCompass0103 physical sciencesCOMPASS experimentCsI photoconverter010306 general physicsRICHInstrumentationEvent reconstructionPhysicsLarge Hadron ColliderSpectrometer010308 nuclear & particles physicsbusiness.industryPIDUpgradePhoton detectionMAPMTCsIParticle identification; COMPASS; RICH; MAPMT; CsI photoconverterHigh Energy Physics::Experimentbusiness
researchProduct

The COMPASS RICH-1 fast photon detection system

2008

Abstract A fast photon detection system has been built as a part of the upgrade of the COMPASS RICH-1 detector: it is based on 576 multi-anode photomultiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes and fast readout electronics. This system has replaced the MWPCs with CsI photo-cathodes in the central region ( 1.3 m 2 , 25% of the total area) of the COMPASS RICH-1 photon detectors and has successfully been operated during the data taking in 2006 and 2007. We report about the fast photon detection system design, construction and commissioning, in particular about the design optimization and the validation tests of the lens telescopes. Preliminary values for the incr…

PhysicsNuclear and High Energy PhysicsPhotomultiplierPhysics::Instrumentation and Detectorsbusiness.industryPhoton detectorDetectorlaw.inventionLens (optics)OpticsUpgradelawCompassSystems designOptoelectronicsHigh Energy Physics::ExperimentbusinessInstrumentationPhoton detectionNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Erratum to: Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/ $$c$$ c

2015

Author(s): Adolph, C; Alekseev, MG; Alexakhin, VY; Alexandrov, Y; Alexeev, GD; Amoroso, A; Andrieux, V; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, SU; Cicuttin, A; Crespo, ML; Dalla Torre, S; Dasgupta, SS; Dasgupta, S; Denisov, OY; Donskov, SV; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, PD; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger Jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedri…

Nuclear physicsPhysicsMuonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physics0103 physical sciencesHadronTransverse momentum010306 general physicsDeep inelastic scattering53001 natural sciencesEngineering (miscellaneous)The European Physical Journal C
researchProduct

Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at s=13TeV with the ATLAS detector

2018

A search for a heavy resonance decaying into WZ in the fully leptonic channel (electrons and muons) is performed. It is based on proton–proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.1 fb −1 . No significant excess is observed over the Standard Model predictions and limits are set on the production cross section times branching ratio of a heavy vector particle produced either in quark–antiquark fusion or through vector-boson fusion. Constraints are also obtained on the mass and couplings of a singly charged Higgs boson, in the Georgi–Machacek model, produced through ve…

PhysicsNuclear and High Energy PhysicsFusionParticle physicsLarge Hadron ColliderMuon010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyATLAS experimentElectronCollision7. Clean energy01 natural sciences0103 physical sciencesHiggs bosonHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Direct photon production in Pb–Pb collisions atsNN=2.76 TeV

2016

Direct photon production at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV was studied in the transverse momentum range 0.9<pT<14 GeV/c. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the e+e− pair reconstructed in the central tracking system. The results of the two methods were combined and direct photon spectra were measured for the 0–20%, 20–40%, and 40–80% centrality classes. For all three classes, agreement was found with perturbative QCD calculations for pT≳5 GeV/c. Direct photon spectra down to pT≈1 GeV/c could be extracted for the 20–40% and 0–20% centrality classes. The significance of th…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsPhoton010308 nuclear & particles physicsHadronBremsstrahlungPerturbative QCD01 natural sciencesParticle identificationNuclear physics0103 physical sciencesRapidityNuclear Experiment010306 general physicsGlauberPhysics Letters B
researchProduct

The characterisation of the multianode photomultiplier tubes for the RICH-1 upgrade project at COMPASS

2008

Abstract A major upgrade of the Cherenkov photon detection system of COMPASS RICH-1 has been performed and it has been in operation since the 2006 physics run. The inner part of the photon detector has been replaced by a different technology in order to measure Cherenkov photons at high photoelectron rates, up to several times 10 6 per second and per channel. Cherenkov photons from 200 to 750 nm are detected by 576 multianode photomultiplier tubes (MAPMTs) with 16 channels each, coupled to individual fused silica lens telescopes and fast, high sensitivity and high time resolution electronics read-out. To guarantee an optimal performance of the complete system, parameters like dark current, …

PhysicsNuclear and High Energy PhysicsPhotomultiplierPhotonPhysics::Instrumentation and Detectorsbusiness.industryDetectorOpticsUpgradeCompassQuantum efficiencybusinessInstrumentationCherenkov radiationDark current
researchProduct

Study of Σ(1385) and Ξ(1321) hyperon and antihyperon production in deep inelastic muon scattering

2013

Large samples of \Lambda, \Sigma(1385) and \Xi(1321) hyperons produced in deep-inelastic muon scattering off a ^6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of \Sigma(1385)^+, \Sigma(1385)^-, \bar{\Sigma}(1385)^-, \bar{\Sigma}(1385)^+, \Xi(1321)^-, and \bar{\Xi}(1321)^+ hyperons decaying into \Lambda(\bar{\Lambda})\pi were measured. The heavy hyperon to \Lambda and heavy antihyperon to \bar{\Lambda} yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.

disParticle physicsStrange quarkdis; hyperon productionPhysics and Astronomy (miscellaneous)diLambda01 natural sciencesCOMPASSHigh Energy Physics - Experimenthyperon production0103 physical sciencesCHARGED CURRENT INTERACTIONSCHARGED CURRENT INTERACTIONS; (LAMBDA)OVER-BAR POLARIZATION; COMPASS010306 general physicsNuclear ExperimentEngineering (miscellaneous)Nuclear ExperimentPhysicsMuon010308 nuclear & particles physicsGenerator (category theory)High Energy Physics::PhenomenologyHyperon(LAMBDA)OVER-BAR POLARIZATIONSigmaProduction (computer science)High Energy Physics::ExperimentParticle Physics - ExperimentBar (unit)
researchProduct

Beauty production in pp collisions at s=2.76 TeV measured via semi-electronic decays

2014

The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s=2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the exper…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronPerturbative QCDElectron01 natural sciences7. Clean energyNuclear physicsPhase space0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

The COMPASS experiment at CERN

2007

The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both…

Nuclear and High Energy Physicsstraw tube detectorPhysics::Instrumentation and DetectorsProject commissioningFOS: Physical sciencesfixed-target experimentRICH detectorhadron structureHigh Energy Physics - ExperimenttargetMWPCNuclear physicsHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopyCOMPASS experimentscintillating fibre detectorNuclear Experimentsilicon microstrip detectorsInstrumentationSilicon microstrip detectorsPhysicsLarge Hadron ColliderStructure functionMicroMegas detectorfront-end electronicsDAQmicromegas detectordrift chamberPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentpolarisedGEM detectorcalorimetryParticle Physics - Experimentpolarised DISNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Fast photon detection for COMPASS RICH-1

2007

A fast photon detection system has been built and assembled for the upgrade of COMPASS RICH-1. The system is based on multianode photomultipliers coupled to fused silica lenses to collect the light from a larger surface and to guide it to the photocathode, preserving the position information. The emphasis is on the fast response and high rate capability of the detectors and the associated electronics. The photon detection system is now ready and it will be employed in the 2006 COMPASS data taking. We report about the system design and construction.

PhysicsNuclear and High Energy PhysicsPhotomultiplierbusiness.industryUV lensesEmphasis (telecommunications)DetectorCOMPASSPhotocathodeOpticsUpgradePhoton detectionCompassCOMPASS; RICH; Multianode photomultiplier tubes; UV lenses; Photon detectionMultianode photomultiplier tubesSystems designElectronicsbusinessInstrumentationRICH
researchProduct

Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

2015

Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.

High energyParticle physicsNuclear and High Energy PhysicsProtonNuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]spin01 natural sciencesSIDIS530SINGLE SPIN ASYMMETRIESHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)TMD PDF and FFPionNuclear and High Energy Physics; TMD PDF and FF; SIDIS; spinRATIO0103 physical sciencesDISTRIBUTIONSSCATTERING[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]010306 general physicsNuclear ExperimentNuclear and High Energy PhysicPhysicsMuon010308 nuclear & particles physicsScatteringlcsh:QC1-999ddc:High Energy Physics::ExperimentParticle Physics - Experimentlcsh:Physics
researchProduct

Measurement of electrons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02TeV

2016

The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p–Pb collisions at √sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5 < pT < 12 GeV/c and the rapidity range −1.065 < ycms < 0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was calculated by comparing the pT-differential invariant cross section in p–Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at √s = 2.76 TeV an…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronQuarkoniumNuclear matter01 natural sciences7. Clean energyParticle identificationNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentInvariant massRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Design and testing of the high speed signal densely populated ATLAS calorimeter trigger board dedicate to jet identification

2017

Abstract—The ATLAS experiment has planned a major upgrade in view of the enhanced luminosity of the beam delivered by the Large Hadron Collider (LHC) in 2021. As part of this, the trigger at Level-1 based on calorimeter data will be upgraded to exploit fine-granularity readout using a new system of Feature Extractors (three in total), which each uses different physics objects for the trigger selection. The contribution focusses on the jet Feature EXtractor (jFEX) prototype. Up to a data volume of 2 TB/s has to be processed to provide jet identification (including large area jets) and measurements of global variables within few hundred nanoseconds latency budget. Such requirements translate …

EngineeringUpgradeLarge Hadron ColliderCalorimeter (particle physics)business.industryGigabitATLAS experimentElectrical engineeringSignal integrityTransceiverbusinessField-programmable gate arrayParticle Physics - Experiment
researchProduct

Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

2014

Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.

Particle physicsNuclear and High Energy PhysicsTMD SIDIS PDFHadronFOS: Physical sciencesSIVERS ASYMMETRIESMUON PROTON-SCATTERINGCOLLINSSIDISPDF01 natural sciences530High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)LEPTOPRODUCTIONDEPENDENCE0103 physical sciencesDISTRIBUTIONSlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentPhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsTMDELECTROPRODUCTIONDeep inelastic scatteringAzimuthAmplitudeMUON PROTON-SCATTERING; SIVERS ASYMMETRIES; SPIN ASYMMETRIES; DISTRIBUTIONS; ELECTROPRODUCTION; LEPTOPRODUCTION; DEPENDENCE; COLLINSlcsh:QC770-798High Energy Physics::ExperimentNucleonSPIN ASYMMETRIESParticle Physics - ExperimentBeam (structure)
researchProduct

Measurement of visible cross sections in proton-lead collisions at √sNN= 5.02 TeV in van der Meer scans with the ALICE detector

2014

In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{\rm{NN}}}=5.02$ TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage $4.6<\eta< 4.9$, $-3.3<\eta<-3.0$ and $2.8<\eta< 5.1$, $-3.7<\eta<-1.7$, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-…

ProtonNuclear Theorylarge detector systems for particle and astroparticle physicsLarge detector systems for particle and astroparticle physics; Particle tracking detec- tors; Heavy-ion detectors01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Particle tracking detectorsparticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron detectionNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentInstrumentationMathematical PhysicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)PhysicsDetectorLuminosity measurement3. Good healthPRIRODNE ZNANOSTI. Fizika.Large detector systems for particle and astroparticle physics Particle tracking detec- torNucleonParticle Physics - ExperimentLarge detector systems for particle and astroparticle physics ; Particle tracking detectors ; Heavy-ion detectorsParticle physicsParticle tracking detec- torsInstrumentationHeavy-ion detectorsFOS: Physical sciencesLarge detector systems for particle and astroparticle physics; Particle tracking detectors; Heavy-ion detectors[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physicsCross section (physics)p-Pb collisions at the LHC0103 physical sciencesNuclear Physics - Experiment010306 general physics010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsALICE experimentLarge detector systems for particle and astroparticle physics Particle tracking detec- tors; Heavy-ion detectorsNATURAL SCIENCES. Physics.heavy-ion detectorsInstrumentation; Mathematical PhysicsPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

Corrigendum to “Odd and even partial waves of ηπ− and η′π− in π−p → η(′)π−p at 191 GeV/c” [Phys. Lett. B 740 (2015) 303–311]

2020

Abstract In Fig. 5 on p. 311 of our Phys. Lett. B 740 (2015) 303 an adjustment by 180 ∘ is required for the phases with respect to the L = 2 , M = 1 wave, of the following waves: L = 1 , 3 , 5 with M = 1 , and L = 2 with M = 2 . After this correction (Fig. 5 (corrected) below), the extracted partial waves describe the angular distribution of the η ( ′ ) in the Gottfried-Jackson (GJ) frame, using Eq. (4) with implicit Condon-Shortley phase convention. The other results of our paper are not affected. The right-handed GJ coordinate system was defined by the z-axis pointing in the direction of the beam in the η ( ′ ) π − center-of-mass system and the y-axis pointing in the direction of p recoil…

PhysicsNuclear and High Energy PhysicsAngular distributionRecoilCoordinate systemPhase (waves)Atomic physicsBeam (structure)lcsh:Physicslcsh:QC1-999Physics Letters B
researchProduct

A highly integrated low-cost readout system for the COMPASS RICH-1 detector

2007

Particle identification at high multiplicities is a key feature of the COMPASS experiment at CERN's SPS. Hadrons up to 50 GeV/c are identified by a RICH detector with a large horizontal and vertical acceptance of plusmn250 mrad and plusmn180 mrad, respectively. The central region of the photon detector is equipped with multi-anode photomultiplier tubes, the remaining 75% of the total active area are covered by MWPCs with Csl photocathodes. In order to improve the performance of the detector at very high beam intensities, more than 62000 channels of a new analog readout system of the MWPCs, based on the APV25 chip, were developed and installed in 2006. The new system features good single pho…

PhysicsPhotomultiplierPhysics::Instrumentation and Detectorsbusiness.industryDetectorPhotodetectorDead timeParticle identificationNuclear physicsOpticsCompassNuclear electronicsCOMPASS experimentHigh Energy Physics::Experimentbusiness2007 IEEE Nuclear Science Symposium Conference Record
researchProduct

Inclusive quarkonium production at forward rapidity in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usep…

2016

We report on the inclusive production cross sections of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepac…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger

2020

The PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the newMultichip Modules along with the improvements to the signal processing achieved.

Physics - Instrumentation and Detectors:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Computer sciencePhysics::Instrumentation and Detectors01 natural sciencesHigh Energy Physics - Experiment030218 nuclear medicine & medical imaginglaw.inventionSubatomär fysikHigh Energy Physics - Experiment (hep-ex)0302 clinical medicinelawSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PreprocessorDetectors and Experimental Techniquesphysics.ins-detInstrumentationMathematical PhysicsFPGASettore FIS/01Signal processingLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)trigger [calorimeter]ATLASCalorimeters; Trigger concepts and systems (hardware and software)Calorimetermedicine.anatomical_structure:Nuclear and elementary particle physics: 431 [VDP]Trigger concepts and systems (hardware and software)design [electronics]Particle Physics - ExperimentComputer hardwareperformanceCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]Analog-to-digital converterFOS: Physical sciences61003 medical and health sciencesCalorimetersAtlas (anatomy)0103 physical sciencesmedicineHigh Energy Physicsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Field-programmable gate arraysignal processingCalorimeterScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industrycalorimeter: trigger530 Physikcalibrationanalog-to-digital converterpile-upExperimental High Energy Physicselectronics: readoutbusinessreadout [electronics]Energy (signal processing)electronics: design
researchProduct

Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

2015

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent w…

shapes:Kjerne- og elementærpartikkelfysikk: 431 [VDP]parton distributionsMonte Carlo methodP(P)OVER-BAR COLLISIONSALICE Charged jet proton-proton 7 TeVATLAS DETECTOR01 natural sciencesSpectral lineHigh Energy Physics - Experimentdifferential charged jet cross sectionENERGYHigh Energy Physics - Experiment (hep-ex)ALICEFragmentation (mass spectrometry)Nuclear and High Energy Physics differential charged jet cross sectionfragmentation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentNuclear Experimentroot-s(nn)=2.76 tevatlas detectorPhysicsLarge Hadron Collidercross sectionPhysicsDetectorCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]charged jetsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]SHAPESTransverse momentumHADRON-COLLISIONSFRAGMENTATIONpp collisionsenergyParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaCharged jetVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencestransverse-momentumNuclear physicsMinimum bias(P)OVER-BAR-P COLLISIONS P(P)OVER-BAR COLLISIONS PP COLLISIONS PARTON DISTRIBUTIONS TRANSVERSE-MOMENTUM SHAPES ALGORITHM ENERGY0103 physical sciences7 TeVNuclear Physics - Experimentproton-protonALGORITHM010306 general physics(p)over-bar-p collisionsPP COLLISIONSta114(P)OVER-BAR-P COLLISIONSVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRANSVERSE-MOMENTUMNATURAL SCIENCES. Physics.(p)over-bar-p collisions ; parton distributions ; transverse-momentum ; root-s(nn)=2.76 tev ; hadron-collisions ; atlas detector ; pp collisions ; fragmentation ; shapes ; energy ; charged jet ; cross section ; proton-proton ; 7 TeVhadron-collisionsPARTON DISTRIBUTIONSALICE; Charged jet; proton-proton; 7 TeVproton-proton collisionsHigh Energy Physics::Experimentcharged jet
researchProduct

Measurement of pion, kaon and proton production in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym…

2015

The measurement of primary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\pm }$$\end{document}π±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\pm }$$\end{document}K±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrs…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}…

2016

The production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}∗(892)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{0}$$\end{document}0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Precision measurement of the mass difference between light nuclei and anti-nuclei

2015

The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons and anti-deuterons, and $^{3}{\rm He}$ and $^3\overline{\rm He}…

electronQuarkspectroscopyAntiparticleParticle physicsPhysics of Elementary Particles and FieldsCPT symmetryStrong interactionNuclear TheoryantunucleiFOS: Physical sciencesAntiprotonGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ElectronHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentAntihydrogenSpectroscopyNuclear Physicsantihydrogenmass measurementQuantum chromodynamicsPhysicsanti-nucleita114SPECTROSCOPY; ANTIHYDROGEN; ANTIPROTON; ELECTRONmass difference nuclei antunucleiHigh Energy Physics::Phenomenologymass differenceNATURAL SCIENCES. Physics.3. Good healthGluonPRIRODNE ZNANOSTI. Fizika.antiprotonnucleiQuark–gluon plasmamassmass difference ; nuclei ; anti-nuclei ; ALICE ; CERNHigh Energy Physics::ExperimentNucleon
researchProduct

Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

2016

ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons a…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics::Instrumentation and Detectorshigh muon multiplicity01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICECERN[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear Experimentcosmic rayPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Large Hadron ColliderDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431ENERGY-SPECTRUMPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGcosmic rays detectorsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics and Astronomy[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FOS: Physical sciencescosmic ray experimentCosmic ray[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]EXTENSIVE AIR-SHOWERScosmic ray ; high muon multiplicity ; ALICE ; CERNBUNDLES114 Physical sciencesREGIONNuclear physicsALICE detectorcosmic rays0103 physical sciencesMultiplicity (chemistry)cosmic rays detector010306 general physicsatmospheric muonsMuon010308 nuclear & particles physicscosmic ray experiments; cosmic rays detectors;EXTENSIVE AIR-SHOWERS; ENERGY-SPECTRUM; BUNDLES; REGION; LEPAstronomy and AstrophysicsLEP115 Astronomy Space scienceNATURAL SCIENCES. Physics.13. Climate actioncosmic ray experiments; cosmic rays detectors; Astronomy and AstrophysicsHigh Energy Physics::Experimentcosmic ray experiments
researchProduct

Measurement of photon?jet transverse momentum correlations in 5.02 TeV Pb + Pb and pp collisions with ATLAS

2019

Jets created in association with a photon can be used as a calibrated probe to study energy loss in the medium created in nuclear collisions. Measurements of the transverse momentum balance between isolated photons and inclusive jets are presented using integrated luminosities of 0.49 nb−1 of Pb + Pb collision data at TeV and 25 pb−1 of pp collision data at TeV recorded with the ATLAS detector at the LHC. Photons with transverse momentum GeV and are paired with all jets in the event that have GeV and pseudorapidity . The transverse momentum balance given by the jet-to-photon ratio, , is measured for pairs with azimuthal opening angle . Distributions of the per-photon jet yield as a function…

PhotonLEAD-LEAD COLLISIONS; PP COLLISIONS; ROOT-S(NN)=2.76 TEV; DEPENDENCEheavy ion: scatteringPhysics::Instrumentation and DetectorsMonte Carlo methodRelativistic heavy ion collisionsphoton–jet transverse momentum correlationsnucl-ex01 natural sciencesHigh Energy Physics - ExperimentDouble Drell–YanSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Double parton-scatteringDEPENDENCESubatomic Physicsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]luminositiesCollisions ROOT-S(NN)=2.76 TEVNuclear Experiment (nucl-ex)Nuclear Experimentdimension: 2GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Nuclear ExperimentMonte CarloComputingMilieux_MISCELLANEOUSQCComputer Science::DatabasesPhysicsJet (fluid)Large Hadron ColliderSettore FIS/01 - Fisica Sperimentalephotonyield [jet]transverse momentum: correlationATLASlcsh:QC1-999:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]medicine.anatomical_structureCERN LHC Coll2 [dimension]nuclear matterLHCLEAD-LEAD COLLISIONSjet: yieldParticle Physics - ExperimentNuclear and High Energy Physicsp p: scatteringenergy loss [parton]530 PhysicsCiências Naturais::Ciências FísicasAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2LHC ATLAS High Energy Physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]jets Nuclear physicsAtlas (anatomy)0103 physical sciencesCalibrationmedicineddc:530RapidityNuclear Physics - Experiment5020 GeV-cms/nucleonHigh Energy Physics010306 general physicsCiencias ExactasFour-lepton productionHiggs golden decay channelPP COLLISIONSScience & Technology010308 nuclear & particles physicshep-exHigh Energy Physics::Phenomenologynucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]FísicaNuclear mattercalibrationjet quenching* Automatic Keywords *rapidityExperimental High Energy PhysicsHigh Energy Physics::Experimentparton: energy losscorrelation [transverse momentum]lcsh:Physicsexperimental resultsPhysics Letters B
researchProduct

Le alleanze strategiche quali percorsi di creazione di valore: un’indagine qualitativa sulle alliance evolution capabilities

2012

alliance dynamic capability evolutionSettore SECS-P/08 - Economia E Gestione Delle Imprese
researchProduct

Measurement of quarkonium production at forward rapidity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfo…

2014

The inclusive production cross sections at forward rapidity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} …

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Centrality dependence of charged jet production in p–Pb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepac…

2016

Measurements of charged jet production as a function of centrality are presented for  p–Pb  collisions recorded at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_\mathrm {NN}}= 5.02$$\end{document}sNN=5.02 TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon–nucleon collisions is determined based on…

Regular Article - Theoretical PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Measurement of the Charged-Pion Polarizability

2015

The COMPASS collaboration at CERN has investigated pion Compton scattering, $\pi^-\gamma\rightarrow \pi^-\gamma$, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $\pi^-\mathrm{Ni}\rightarrow\pi^-\gamma\;\mathrm{Ni}$, which is initiated by 190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $Q^2<0.0015$\,(GeV/$c$)$^2$. From a sample of 63\,000 events the pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\ 0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times 10^{-4}\,\mbox{fm}^3$ under the …

Particle physicsChiral perturbation theoryPhotonComputerSystemsOrganization_COMPUTERSYSTEMIMPLEMENTATIONStrong interactionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONGeneral Physics and AstronomyFOS: Physical sciencesComputerApplications_COMPUTERSINOTHERSYSTEMSGeneralLiterature_MISCELLANEOUSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionPolarizabilityNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentPhysicsChPTMuonCompton scatteringpolarisabilitypolarisability; ChPTComputingMethodologies_PATTERNRECOGNITIONHigh Energy Physics::ExperimentMagnetic dipoleParticle Physics - Experiment
researchProduct