0000000000899596
AUTHOR
Franco Grisafi
Mixing dynamics in uncovered unbaffled stirred tanks
Abstract The present work is aimed at providing experimental information on mixing rates in an unbaffled vessel under free surface vortexing conditions. The planar laser induced fluorescence (PLIF) technique was used for measuring the dispersion dynamics of a passive tracer over a vertical section of the vessel. In agreement with the quite scant literature information available for these systems, results confirm the existence of two well defined, partially segregated, zones that give rise to a double mixing dynamics behavior. A suitable mixing time definition is proposed and applied to a number of experimental runs with different stirrer geometries and agitation speeds. Results confirm that…
SOLID-LIQUID SUSPENSIONS IN UNBAFFLED TANKS
Unbaffled stirred tanks are seldom employed in the process industry as they are considered poorer mixers than baffled tanks. However, they might provide significant advantages in a wide range of applications like crystallization processes as well as for food and pharmaceutical industries, where the presence of baffles is often undesirable. In the present work solid-liquid suspension in an unbaffled stirred tank was investigated. A novel experimental method (steady cone radius method) was devised to ease the evaluation of the minimum impeller speed for complete particle suspension (Njs). Experiments encompassed a quite wide range of particle sizes, densities and solids concentration. The Njs…
PROCESS AND PRODUCT OPTIMIZATION IN THE ARTISANAL PRODUCTION OF SICILIAN COFFE GELATO
The production of artisan gelato has always been a very important sector for the Italian economy, the aim of this work is to highlight the peculiarity of production in Sicily, in synergy with a young economic reality and the production reality that is expanding Gelateria Cappadonia, Caffè Morettino Srl Palermo and the academic world. The aim of this research is to solve the color change during the production of artisan coffee gelato.
Turbulent Fluid Flow in Closed- and Free-Surface Unbaffled Tanks Stirred by Radial Impellers
CFD simulation of gas-liquid hydrodynamics in a rectangular air–lift loop reactor
Computational Fluid Dynamics is an increasingly important tool for carrying out realistic simulations of process apparatuses. As a difference from single phase systems, for multi phase systems the development of CFD models is still at its early stages. Moreover, gas-liquid systems are characterised by an additional complexity level, related to the fact that, as a difference with solid-liquid systems, bubble sizes are not known in advance, being rather the result of formation and breakage-coalescence dynamics, and therefore of complex phenomena related to flow dynamics and interfacial effects. In the present work CFD simulations of gas-liquid air-lift reactors are reported. All bubbles are a…
On vortex shape in unbaffled stirred vessels as measured by digital image analysis
In this work, digital image analysis coupled with a suitable shadowgraphy-based technique is employed to investigate the shape of the free-surface vortex that forms in uncovered unbaffled tanks stirred by either a D=T/3 Lightnin A310 or a D=T/3 Rushton turbine. The technique is based on back-lighting the vessel and suitably averaging vortex images over time. Data obtained show that the two different impellers give rise to quite different vortex shapes. A novel 2-parameter model is proposed that successfully describes vortex shapes obtained with both impellers.
A NOVEL TECHNIQUE FOR MEASURING LOCAL BUBBLE SIZE DISTRIBUTION
A novel experimental technique for measuring the local gas hold-up and the statistical distribution of local bubble size, is proposed. The technique is based on laser sheet illumination of the gas-liquid dispersion and synchronized camera, i.e. on equipment typically available in PIV set-ups. The liquid phase is made fluorescent by a suitable dye, and a band-pass optical filter is placed in front of the camera optics, in order to allow only fluoresced light to reach the camera CCD. In this way bubbles intercepted by the laser sheet are clearly identified thanks to the neat shade resulting in the images. This allows excluding from subsequent analysis all bubbles visible in the images but not…
Mass transfer and hydrodynamic characteristics of unbaffled stirred bio-reactors: Influence of impeller design
Abstract Unbaffled stirred tanks are increasingly recognized as a viable alternative to common baffled tanks for a range of processes where the presence of baffles is undesirable for some reason. For instance, in the case of shear sensitive cell cultivation (e.g. human cells), unbaffled tanks have been recently found to be able to provide sufficient mass transfer through the free surface vortex. As a consequence the need for bubble formation and subsequent bursting, along with relevant cells damage, is conveniently avoided. In this work the influence of impeller geometry on mass transfer performance and power demand of an unbaffled stirred vessel operating both in sub-critical conditions (t…
Large Eddy Simulation of Unbaffled Stirred Tanks
Local gas-liquid hold-up and interfacial area via light sheet and image analysis
Particle Image Velocimetry techniques coupled with advanced Image Processing tools are receiving an increasing interest for measuring flow quantities and local bubble-size distributions in gas-liquid contactors. In this work, an effective experimental technique for measuring local gas hold-up and interfacial area, as well as bubble size distribution, is discussed. The technique, hereafter referred to as Laser Induced Fluorescence with Shadow Analysis for Bubble Sizing (LIF-SABS) is based on laser sheet illumination of the gas-liquid dispersion and synchronized camera, i.e. on equipment typically available within PIV set-ups. The liquid phase is made fluorescent by a suitable dye, and an opt…
Gas-liquid-solid operation of a Long Draft Tube Self-ingesting Reactor (LDTSR)
Gas-liquid stirred vessels are widely employed to carry out chemical reactions involving a gas reagent and a liquid phase. The usual way for introducing the gas stream into the liquid phase is through suitable distributors placed below the impeller. An interesting alternative is that of using “self ingesting” vessels where the headspace gas phase is injected and dispersed into the vessel through suitable surface vortices. In this work the performance of a Long Draft Tube Self-ingesting Reactor dealing with gas-liquid-solid systems, is investigated. Preliminary experimental results on the effectiveness of this contactor for particle suspension and gas-liquid mass transfer performance in pres…
Modeling and simulation of dense cloud dispersion in urban areas by means of computational fluid dynamics
Abstract The formation of toxic heavy clouds as a result of sudden accidental releases from mobile containers, such as road tankers or railway tank cars, may occur inside urban areas so the problem arises of their consequences evaluation. Due to the semi-confined nature of the dispersion site simplified models may often be inappropriate. As an alternative, computational fluid dynamics (CFD) has the potential to provide realistic simulations even for geometrically complex scenarios since the heavy gas dispersion process is described by basic conservation equations with a reduced number of approximations. In the present work a commercial general purpose CFD code (CFX 4.4 by Ansys®) is employe…
Heavy Gas Dispersion Modelling Over a Topographically Complex Mesoscale: A CFD Based Approach
Abstract: Potentially dangerous events involving heavy gas dispersion and their severe consequences have been largely publicized by the media. Simplified models have been widely applied to describe the effects of these accidents. However, most simplified models deal with flat terrain scenarios and are based on quite crude simplifications of the complex phenomenology involved. In this paper the possibility of simulating the dispersion of heavy gas clouds over a large topographically complex area (tens of km) by a general purpose computational fluid dynamics (CFD) code is investigated. The aim is that of setting up a tool able to produce a realistic description of such dispersion processes, w…
MULTIFUNCTION REACTOR
Described herein is a reactor (1) includes: a first reaction volume (V1), a second reaction volume (V2), wherein: the first reaction volume (V1) is in fluid communication with an inlet port for an oxidizer agent (OX_IN), an inlet port for at least one first reactant (R1_IN) and an outlet port for at least one reaction product (P1_OUT), said second reaction volume (V2) is in fluid communication with an inlet port for at least one second reactant (R2_IN), an outlet port for at least one second reaction product (P2_OUT) and is furthermore in thermal exchange relationship with said first reaction volume (V1), wherein, during operation, in said first reaction volume (V1) an oxidation reaction oc…
Comparison between experimental data and CFD simulations of a continuous heavy gas plume in an atmospheric wind tunnel
Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine
The turbulent flow fieldgeneratedin an unbaffledstirredtank by a Rushton turbine was computedby large-eddy simulation (LES). The Smagorinsky model was used to model the unresolved, or sub-grid, scales. A general purpose CFD code was appropriately modified in order to allow the computation of the sub-gridviscosity andto perform statistics on the computedresults. The numerical predictions were comparedwith the literature results for comparable configurations andwith experimental data obtainedusing particle image velocimetry. A very goodagreement was foundas regards both time-averagedresolv edfield s andturb ulence quantities. 2004 Elsevier Ltd. All rights reserved.
A phenomenological model for the quantitative interpretation of partial suspension conditions in stirred vessels
Publisher Summary Many important chemical engineering operations involve the suspension of solid particles in a liquid phase inside stirred tanks. Relevant examples include adsorption, crystallization, dissolution, leaching, precipitation, ion exchange and catalytic multiphase processes. This chapter describes a phenomenological model for the quantitative determination of the suspended solids mass fraction in stirred tanks operated at partial suspension conditions. Experimental data on fractional suspension, obtained by the “Pressure Gauge Technique” in vessels stirred by a downward-pumping pitched-blade-turbine, are presented. Furthermore, model predicted trends are compared with experimen…
Indagine PIV e modellazione CFD di getti pesanti inclinati
Apparato di sintesi su letto catalitico e separazione di fasi liquido-gas
Apparato di sintesi su letto catalitico e di separazione dei prodotti di sintesi comprendenti una fase gassosa e due fasi liquide, una fase liquida più pesante e l’altra fase liquida più leggera, l’apparato comprendente - un modulo di sintesi (M1) comprendente un primo tubo (1) provvisto ad una prima estremità di un’apertura e chiuso ad una seconda estremità da una griglia (7), il primo tubo (1) essendo atto a contenere al suo interno un letto catalitico (6); - ed un modulo di separazione (M2) per separare le due fasi liquide e la fase gassosa provenienti dal modulo di sintesi (M1), comprendente un secondo tubo (1’) disposto adiacente alla seconda estremità del primo tubo (1), comunicante c…
Modelling and Simulation of Gas–liquid Hydrodynamics in a Rectangular Air-lift Reactor
Abstract Computational Fluid Dynamics is a quite well established tool for carrying out realistic simulations of process apparatuses. However, as a difference from single phase systems, for multiphase systems the development of CFD models is still in progress. Among the two-phase systems, gas–liquid systems are characterised by an additional complexity level, related to the fact that bubble sizes are not known in advance, being rather the result of formation and breakage-coalescence dynamics and therefore of complex phenomena related to flow dynamics and interfacial effects. In the present work, Euler–Euler Reynolds-averaged flow simulations of an air-lift reactor are reported. All bubbles …
Solid-liquid mass transfer coefficients in gas-solid-liquid agitated vessels
The research on mass transfer coefficients in solid-liquid agitated systems has received substantial attention in the past, due both to the interest in fundamental aspects of mass transfer between particles and turbulent fluids and to the importance of practical applications. In contrast, little information is available on solid-liquid mass transfer when a third gaseous phase is also dispersed into the system, in spite of the importance of the applications of gas-solid-liquid agitated systems. In this work a suitable dissolution technique was used to measure the solid-liquid mass transfer coefficient in gas-solid-liquid vessels stirred by either radial or axial impellers. The mechanical pow…
Characterization of pressure retarded osmosis lab-scale systems
Power generation from salinity gradient is a viable alternative to produce energy from renewable sources. Pressure Retarded Osmosis (PRO) is one of the technologies proposed so far for the exploitation of such energy source. In the present preliminary work, two different geometry modules were tested under atmospheric pressure (i.e. forward osmosis or depressurized-PRO conditions). The first one is a conventional planar geometry cell. The second is a customized cylindrical membrane module, able to mechanically support the osmotic membrane along with the spacers. The latter, thanks to its design, allows membranes and spacers to be easily changed for testing purposes. A novel simplified proced…
On the Simulation of Solid Particle Distribution in Multiple Impeller Agitated Tanks via Computational Fluid Dynamics
Prediction of flow fields in a dual-impeller stirred vessel
Numerical simulations were connected for the flow field in a baffled tank stirred by a dual Rushton impeller. For this geometry, LDV measurements show a characteristic dependence of the flow patterns upon the position of the impellers. Two advanced modeling approaches were tested. In the first, the vessel was divided info two concentric blocks, coupled by, a sliding grin technique, and simulations were conducted in time-dependent mode. In the second approach, the vessel was modeled as two partially over-lapping I regions, the inner one rotating with the impeller and rite outer one stationary simulations were run in steady-state mode for each of the two regions, while information was iterati…
Heavy Gas Dispersion Modelling Over a Topographically Complex Mesoscale
Potentially dangerous events involving heavy gas dispersion and their severe consequences have been largely publicized by the media. Simplified models have been widely applied to describe the effects of these accidents. However, most simplified models deal with flat terrain scenarios and are based on quite crude simplifications of the complex phenomenology involved. In this paper the possibility of simulating the dispersion of heavy gas clouds over a large topographically complex area (tens of km) by a general purpose computational fluid dynamics (CFD) code is investigated. The aim is that of setting up a tool able to produce a realistic description of such dispersion processes, whose resul…
Quasi-isoactinic reactor for photocatalytic kinetics studies
Photochemical reactors characterized by almost uniform values of the local volumetric rate of photon absorption (LVRPA), i.e., quasi-isoactinic photoreactors, are particularly suitable for assessing the influence of radiant field intensity in kinetic studies. In this work, Monte Carlo simulations have been performed to obtain LVRPA values in a flat photoreactor irradiated on both sides. This configuration appears to be particularly suitable for obtaining quasi-isoactinic conditions. The influence of catalyst albedo and scattering phase function is assessed, and the conditions for obtaining iso-actinicity are discussed. Finally, these conditions are related to an easy-to-measure parameter, n…
Numerical Simulation of Low Reynolds Number Flow Fields in Unbaffled Stirred Vessels
Analysis of the differences in kLa values determined by different variants of the dynamic method in stirred tanks
Inoculum of Indigenous Microalgae/Activated Sludge for Optimal Treatment of Municipal Wastewaters and Biochemical Composition of Residual Biomass for Potential Applications
In this work, municipal wastewater was treated with microalgal/activated sludge consortia. We aimed at obtaining a positive interaction between the microalgae and the heterotrophic bacteria and identifying the best combination for bioremediation purposes. A strain of Chlorella sp CW2 employed in this work was isolated from AS and molecularly characterised in this work for the first time. This strain and another previously isolated strain (Chlorella sp Pozzillo) were inoculated alone and in combination with AS in different ratios in wastewaters. Microalgae/activated sludge growth curves were obtained by using a UV–vis spectrophotometer and a fluorimeter to distinguish the contribution of the…
Particle flow modelling in slurry-fed stirred vessels
In this paper experimental information on the retention time distribution (RTD) of solid particles in a high-aspect-ratio vessel, stirred by three equally spaced Rushton turbines, is presented. The relevant data were obtained by a special technique named twin system approach (TSA) that greatly simpli+es the handling of particle-laden streams and is therefore particularly suited for investigating particle RTD in 9ow systems. The technique fundamentals are +rst summarized, together with the data analysis procedure. This lastly requires a numerical deconvolution operation that is easily performed with the help of Z-transforms. Two di;erent approaches for excluding the spurious contributions of…
Free surface oxygen transfer in large aspect ratio unbaffled bio-reactors, with or without draft-tube
Abstract It is widely accepted that animal cell damage in aerated bioreactors is mainly related to the bursting of bubbles at the air–liquid interface. A viable alternative to sparged bioreactors may be represented by uncovered unbaffled stirred tanks, which have been recently found to be able to provide sufficient mass transfer through the deep free surface vortex which takes place under agitation conditions. As a matter of fact, if the vortex is not allowed to reach impeller blades, no bubble formation and subsequent bursting at the free-surface, along with relevant cells damage, occurs. In this work oxygen transfer performance of large aspect ratio unbaffled stirred bioreactors, either e…
On the simulation of stirred tank reactors via computational fluid dynamics
Abstract Predictions of flow fields in a stirred tank reactor, obtained by computational fluid dynamics, were used for the simulation of a mixing sensitive process consisting of two parallel reactions competing for a common reagent: A + B → Prod .1 A + C → Prod .2. Experimental data were obtained for A = OH − , B = 1 2 Cu ++ and C=ethyl-chloroacetate. For this reaction scheme the final selectivity of the process, easily measured by a simple colorimetric analysis of the residual Cu++, was found to depend on agitation speed and therefore on the mixing history during the batch process. The flow field-based three-dimensional simulations performed here led to predictions that compared very well …
Estimating radiant fields in flat heterogeneous photoreactors by the six-flux model
Heterogeneous photoreactor modeling is a task complicated by the integro-differential nature of the Radiation Transfer Equation (RTE) when scattering phenomena are important. In the present work, a novel “Six Flux Model” (SFM) is proposed, which may be regarded as a step forward with respect to the previously proposed “Two Flux Model” (TFM). In order to validate the newly proposed model, Monte Carlo simulations of an indefinite plane-slab photoreactor have been performed. As no simplifying assumptions are involved in this case, the information obtained may be regarded as “pseudo-experimental,” and therefore compared with the predictions of both TFM and SFM models. Results show that the nove…
Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous
Abstract Microalgae have promising applications in wastewater treatment because of their ability to use inorganic compounds such as nitrates and phosphates as nutrients for their growth. Microalgae are applied to the secondary and tertiary bio-treatment with two benefits: i) pollutants removal from wastewater; ii) production of microalgal biomass, that can be exploited as a source of biomass and biomolecules. In the present work, four different microalgal strains (two from culture collections and two isolated from Sicilian littoral) were tested in municipal sewage bioremediation. The sewage of a municipal plant, already processed with primary treatment, was used for the cultivation of micro…
Modelling and bench scale investigation of inclined dense jets
On the measurement of bubble size distribution in gas–liquid contactors via light sheet and image analysis
Abstract Particle image velocimetry techniques coupled with advanced image processing tools are receiving an increasing interest for measuring flow quantities and local bubble-size distributions in gas–liquid mechanically agitated vessels. When trying to analyze image information the problem arises that bubble sizes are generally underestimated, due to the fact that the laser sheet used for lighting the system randomly cuts bubbles over non-diametrical planes, leading to an apparent bubble size distribution even in the ideal case of single sized bubbles. Clearly in the case of bubbles with a size distribution the experimental information obtained is affected by the superposition of effects.…
Experimental study of the pyrolysis of waste bitumen for oil production
Abstract This work focuses on bitumen slow pyrolysis. Mass and energy yields of oil, solid and gas were obtained from pyrolysis experiments using a semi-batch reactor in a nitrogen atmosphere, under three non-isothermal conditions (maximum temperature: 450 °C, 500 °C and 550 °C). The effect of temperature on the product yields was discussed. The gas compositions were analysed using gas chromatography (GC) and the heating value of oil and solid residue was also measured. Using a thermo-gravimetric analyser, kinetic parameters were evaluated through Ozawa-Flynn-Wall (OFW) method. Results showed that oil yield is maximum at 500 °C (50%). Moreover, gas yield increased with increasing pyrolysis …
MISURA DELLA CONCENTRAZIONE DI SOLIDI PARTICELLARI IN SISTEMI SOLIDO-LIQUIDO AGITATI MEDIANTE LASER PULSATO E ANALISI DI IMMAGINI
Computational modelling of flow and turbulence in submerged dense jets
Residence time distribution of solid particles in a continuous, high-aspect-ratio multiple-impeller stirred vessel
Abstract In this paper experimental information on the retention time distribution (RTD) of solid particles in a high-aspect-ratio vessel, stirred by three equally spaced Rushton turbines, is presented. The relevant data were obtained by a special technique named twin system approach (TSA) that greatly simplifies the handling of particle-laden streams and is therefore particularly suited for investigating particle RTD in flow systems. The technique fundamentals are first summarized, together with the data analysis procedure. This lastly requires a numerical deconvolution operation that is easily performed with the help of Z -transforms. Two different approaches for excluding the spurious co…
MIXING TIME IN UNBAFFLED STIRRED TANKS
Unbaffled stirred tanks, despite their poorer mixing performance with respect to baffled vessels, are gaining a growing industrial interest as they provide significant advantages in selected applications, including a number of biochemical, food and pharmaceutical processes. There still is however a general lack of information on their mixing performance, that needs to be addressed in order to fully exploit their application potential. The present work is aimed at providing experimental information on mixing rates in an unbaffled vessel operated without top-cover (Uncovered Unbaffled Stirred Tank, UUST). The planar laser induced fluorescence (PLIF) technique was adopted for measuring the dis…
CFD simulation of heavy pollutants in urban areas: the case study of Messina.
POWER CONSUMPTION IN UNBAFFLED TANKS: SUB AND SUPER-CRITICAL REGIMES
Unbaffled stirred tanks are increasingly recognized as a viable alternative to common baffled tanks for a range of processes (e.g. crystallization, food and pharmaceutical processes, etc) where the presence of baffles is undesirable for some reason. Also, in the case of bioreactors for animal cell cultivation, where cell damage is mainly related to bubbles bursts at the air –liquid interface, unbaffled tanks have been shown to be able to provide sufficient mass transfer through the free surface vortex. As a consequence bubble formation and subsequent bursting is conveniently avoided (Scargiali et al., 2012). The same feature clearly makes unbaffled vessels potentially advantageous for any f…
Misura di proprietà ottiche di fotocatalizzatori
CFD simulation of dense plumes in an atmospheric wind tunnel
Combined effect of nutrient and flashing light frequency for a biochemical composition shift in Nannochloropsis gaditana grown in a quasi-isoactinic reactor
Artificial lighting may be an interesting opportunity for the cultivation of microalgae as an alternative to natural sunlight. In particular, light emitting diodes (LEDs) can be employed to tailor the lighting to the microalgal culture in a controlled mode in order to create flashing light. In order to establish the effect of the flashing frequency on growth and biochemical composition of a model microalga, a quasi-isoactinic reactor, in which the light distribution is almost homogeneous, was set up. In this work, it was employed for the cultivation of the heterokont Nannochloropsis gaditana in two growth media with limiting and nonlimiting nutrients. The combined effect of nutrient concent…
Mass transfer and hydrodinamic characteristics of a high aspect ratio self-ingesting reactor for gas-liquid operations
Abstract The mass transfer performance of a gas–liquid self-ingesting stirred reactor is reported both for coalescing and non-coalescing systems. The vessel features are a high aspect ratio and a rather narrow multiple-impeller draft tube, through which the gas phase is ingested and led down to the vessel bottom, where it is finely dispersed into the liquid rising in the annular portion of the vessel. Comparison is made between k L a values determined by several variants of the dynamic method, among which pure oxygen absorption in a previously de-gassed liquid phase. Results show that the gas–liquid mass transfer coefficient values obtained with the last approach are remarkably larger than …
Vacuum air-lift bioreactor for microalgae production
Microalgae production is receiving an increasing interest both by research institutions and commercial companies (Di Caprio et al., 2016). This is due to the growing consciousness of the need to move towards renewable, sustainable feedstoks for commodities production (Wang et al., 2012). However, process development at industrial scale, either based on open or closed photobioreactors, still is in a rather early stage and there is room for further development (Morweiser et al., 2010), especially aimed at reducing process costs. In this work an innovative low-cost technology for microalgae production, currently under development at Palermo University, is described. The main ways through which…
Vortex shape in unbaffled stirred vessels: experimental study via digital image analysis
There is a growing interest in using unbaffled stirred tanks for addressing certain processing needs. In this work, digital image analysis coupled with a suitable shadowgraphy-based technique is used to investigate the shape of the free-surface vortex that forms in uncovered unbaffled stirred tanks. The technique is based on back-lighting the vessel and suitably averaging vortex shape over time. Impeller clearance from vessel bottom and tank filling level are varied to investigate their influence on vortex shape. A correlation is finally proposed to fully describe vortex shape also when the vortex encompasses the impeller.
Complete Numerical Simulation of Flow Fields in Baffled Stirred Vessels: The Inner-Outer Approach
CFD simulation of reactive flows in an unbaffled vessel
Simplified dynamic pressure method for kLa measurement in aerated bioreactors
Abstract A simplified version of the dynamic pressure method for measuring mass-transfer coefficients in gas–liquid systems is proposed. With this method oxygen concentration in the liquid phase is monitored after a sudden change of total pressure is applied to the system. With respect to the original technique introduced by Linek [14] the simplified version here proposed greatly simplifies the data treatment, yet resulting in good accuracy for most practical purposes. In practice, with the help of a simple mathematical model, it is found that the dynamic oxygen concentration response, when plotted as residual driving force versus time in a semi-log diagram, should be expected to finally se…
The Six Flux Model for the modelling of radiant fields in heterogeneous photoreactors
Power Consumption in Uncovered Unbaffled Stirred Tanks: Influence of the Viscosity and Flow Regime
Notwithstanding the increasing industrial interest toward unbaffled tanks, available experimental information on their behavior is still scant, even for basic quantities such as the mechanical power drawn. In this work, the influence of the Reynolds and Froude numbers on the power consumption characteristics is presented for unbaffled stirred tanks operating both in nonaerated conditions (subcritical regime) and in aerated conditions (supercritical regime), i.e., when the free surface vortex has reached the impeller and the gas phase is ingested and dispersed inside the reactor. Experimental results obtained at various liquid viscosities show that power numbers obtained in subcritical condi…
Computational modelling of submerged dense jets
Heavy gas dispersion modelling by means of computational fluid dynamics
On the measurement of local gas hold-up and interfacial area in gas–liquid contactors via light sheet and image analysis
Abstract Particle image velocimetry techniques coupled with advanced image processing tools are receiving an increasing interest for measuring flow quantities and local bubble-size distributions in gas–liquid contactors. Aim of this work is that of providing a numerical procedure able to reconstruct local gas hold-up and specific interfacial area from images obtained by laser sheet illumination. A correction for measured quantities accounting for laser sheet thickness is proposed and tested by means of Monte Carlo simulations. The algorithms proposed are robust and independent of any measured parameters of the actual bubble size distribution.
Oxygen transfer performance of unbaffled stirred vessels in view of their use as biochemical reactors for animal cell growth
Cultivation of microorganisms, plants or animal cells requires liquid agitation in order to ensure oxygen and nutrient transfer and to maintain cell suspension. However, In such suspensions both mechanical agitation and sparging aeration can cause cell death. Many studies on animal cell damage due to mechanical agitation and sparging aeration have shown that mechanical damage of freely suspended animal cells is in most cases associated with bursting bubbles at the air–liquid interface (Barrett et al., 2010, Nienow et al., 1996). Gas bubbles are usually generated by direct air sparging to propagate oxygen in a culture suspension. Mechanical agitation may also introduce gas bubbles to the cul…
Gas-liquid-solid Operation of a High Aspect Ratio Self-ingesting Reactor
Gas-liquid stirred vessels are widely employed to carry out chemical reactions involving a gas reagent and a liquid phase. The usual way for introducing the gas stream into the liquid phase is through suitable distributors placed below the impeller. An interesting alternative is that of using “self ingesting” vessels where the headspace gas phase is injected and dispersed into the vessel through suitable surface vortices. In this work the performance of a Long Draft Tube Self-ingesting Reactor (LDTSR) dealing with three-phase (gas-liquid-solid) systems, is investigated. Preliminary experimental results on the effectiveness of this contactor for particle suspension and gas-liquid mass transf…
Oscillation dynamics of free vortex surface in uncovered unbaffled stirred vessels
Abstract The main feature of unbaffled stirred tanks is the highly swirling liquid motion, which leads to the formation of a central vortex on the liquid free surface, when the vessel is operated without top-cover (Uncovered Unbaffled Stirred Tanks, UUST). One of the main drawbacks of such vessels, that limits their industrial applicability, is the possible onset of low-frequency sloshing of the free surface. In this work, original data on oscillation dynamics in UUST are presented. In particular, data focus on the oscillation amplitude as well as on their frequency. Data were obtained by means of a novel experimental technique based on digital image analysis. The effect of impeller geometr…
ON THE PERFORMANC E OF A TAYLOR-COUETTE REACTOR FOR NANO-PARTICLE PRECIPITATION
CFD simulation of a parallel-competitive reaction scheme in an unbaffled vessel
CFD Simulation of Particle Suspension Height in Stirred Vessels
Computational fluid dynamics (CFD) simulation capabilities for stirred solid–liquid dense systems are explored. These systems may give rise to the formation of a thick and well defined clear liquid layer in the upper part of the vessel, whose extension progressively reduces with increasing impeller speed. Experimental measurements of the suspension height (the height of the particle laden layer) were carried out at various agitation speeds for a variety of solid–liquid systems in a fully baffled transparent tank. A clear layer of liquid was actually observed in all runs, with the suspension height almost linearly dependent on agitation speed. CFD simulations of the above described systems w…
On the measurement of local gas hold-up, interfacial area and bubble size distribution in gas–liquid contactors via light sheet and image analysis: Imaging technique and experimental results
Abstract In this work a novel experimental technique for measuring local gas hold-up, interfacial area and bubble size distribution, in gas–liquid systems is proposed. The technique is based on advanced Image Processing coupled with experimental set-ups typically available for Particle Image Velocimetry. A fluorescent dye dissolved in the liquid phase allows to identify in-plane bubbles among all visible bubbles in the images. To this end, a suitable algorithm is proposed. The raw data so obtained are processed by previously developed statistical methods that result in a reliable reconstruction of actual dispersion properties. The technique is applied to the case of a gas-dispersed mechanic…
Comparison of Agitators Performance for Particle Suspension in Top-Covered Unbaffled Vessels
Power savings is a problem of crucial importance nowadays. In process industry, suspension of solid particles into liquids is usually obtained by employing stirred tanks, which often are very power demanding. Notwithstanding tanks provided with baffles are traditionally adopted for this task, recent studies have shown that power reductions can be obtained in top-covered unbaffled vessels. In the present work experiments were carried out in a top-covered unbaffled vessel with a diameter T=0.19m and filled with distilled water and silica particles. Two different turbines were tested: a standard six-bladed Rushton Turbine (RT) and a 45° four bladed Pitched Blade Turbine (PBT). For the case of …
On the Performance of A Long Draft Tube Self-Ingesting Reactor for Gas-Liquid Operations
A novel self-inducing reactor, is presented. Its main features are a high aspect-ratio and a fairly narrow multiple-impeller draft tube, through which the gas phase is ingested and drowned down to the vessel bottom, where it is dispersed into the rising liquid. Preliminary experimental results on the apparatus performance are presented.
Bench-scale investigation of inclined dense jets
In this work experimental data on the geometry of dense inclined jets issuing in a lab-scale glass rectangular tank are presented. The surrounding fluid was always tap water at room temperature while the dense jets were water solutions of NaCl. Four parameters were changed in the experiments, namely nozzle diameter and inclination, and jet density and flow rate. Jet trajectories were revealed by a colored tracer. Images of the jet were recorded by a digital camera and then further digitally processed, eventually resulting in a time-averaged tracer intensity field. All the jet geometrical parameters, once normalized, were found to be very well correlated to the densimetric Froude number. Mod…
Oxygen Transfer Performances of Unbaffled Bio_Reactors with Various Aspect Ratios
Cultivation of microorganisms, plants or animal cells requires liquid agitation in order to ensure oxygen and nutrient transfer and to maintain cell suspension. Many studies on animal cell damage due to mechanical agitation and sparging aeration have shown that mechanical damage of freely suspended animal cells is in most cases associated with bursting bubbles at the air–liquid interface (Barrett et al., 2010). Gas bubbles are usually generated by direct air sparging aimed at supplying oxygen to the culture medium. Mechanical agitation may also introduce gas bubbles in the culture medium via vortexing entrainment from the free surface. In this work oxygen transfer performance of an unbaffle…
A geometric approach for predicting vertical stationary profiles of weakly inertial advecting-diffusing particles in closed incompressible flows
Abstract Mixing of weakly inertial particles in closed flows is often addressed by considering individual particles as passive advecting-diffusing tracers, subjected to an additional settling velocity resulting from body forces (e.g. gravity). We show that the qualitative and quantitative features of the vertical particle distribution (i.e. the horizontal cross-sectional averages of particle concentration) can be predicted from the structure of the flow resulting from the superposition of the stirring field and the settling velocity. The prediction is based upon the observation that the resulting flow can be divided into two nonoverlapping regions, namely trajectories that are confined with…
CFD simulations of the clear liquid layer formation in dense solid-liquid suspension
ON THE MEASUREMENT OF MASS TRANSFER COEFFICIENT KLA IN GAS-LIQUID CONTACTORS VIA OXYGEN CONCENTRATION DYNAMICS
A Six Flux Model for the estimation of radiant fields in flat heterogeneous photoreactors
Assessment of particle suspension conditions in stirred vessels by means of pressure gauge technique
In this work the quantitative assessment of the mass of suspended solid particles in stirred vessels is performed using the Pressure Gauge Technique. This is based on the measurements of the pressure increase on the tank bottom due to the presence of suspended solid particles at any agitation speed. The method has the advantages of not utilising visual observations and of easy and inexpensive application to both laboratory and industrial equipment. Very few data are available in literature and the experimental results collected using the present PGT technique and the correlations here proposed are of considerable academic and industrial interest.
Bubble formation at single nozzles
Mass transfer and hydrodynamic characteristics of a Long Draft Tube Self-ingesting Reactor (LDTSR) for gas-liquid-solid operations
Gas-liquid stirred vessels are widely employed to carry out chemical reactions involving a gas reagent and a liquid phase. The usual way for introducing the gas stream into the liquid phase is through suitable distributors placed below the impeller. An interesting alternative is that of using “self ingesting” vessels where the headspace gas phase is injected and dispersed into the vessel through suitable surface vortices. In this work the performance of a Long Draft Tube Self-ingesting Reactor dealing with gas-liquid-solid systems, is investigated. Preliminary experimental results on the effectiveness of this contactor for particle suspension and gas-liquid mass transfer performance in pres…
Misure di proprietà ottiche di fotocatalizzatori
Modelling and simulation of gas-liquid hydrodynamics in mechnically stirred tanks
Abstract Computational fuid dynamics (CFD) is an increasingly important tool for carrying out realistic simulations of process equipment. In the case of multiphase systems the development of CFD models is less advanced than for single-phase systems. In the present work CFD simulations of gas–liquid stirred tanks are reported. An Eulerian–Eulerian multi-fluid approach is used in conjunction with the simplest two-phase extension of the k–ɛ turbulence model. All bubbles are assumed to share the same size. The effect of inter-phase forces on simulation results is separately considered. As concerns drag, it is shown that the sole parameter needed to characterize the dispersed phase behaviour is …
Bubble formation at variously inclined nozzles
Bubble formation at variously inclined submerged nozzles, fed with a continuous gas flow rate, is investigated. Results confirm previous findings, such as a substantial independence of bubble size of nozzle diameter and its dependence on the cubic root of gas flow rate at sufficiently high values of this parameter. Nozzle inclination in the range between 0 and 135° from the vertical upward orientation is found to have a negligible effect on bubble size. Observed bubble rise velocities lead to an estimation of the average liquid velocity induced by bubbles motion, leading in turn to a very simple correlation for the estimation of the liquid velocities induced by the repeated passage of bubbl…
Solid–Liquid Suspensions in Top-Covered Unbaffled Vessels: Influence of Particle Size, Liquid Viscosity, Impeller Size, and Clearance
Particle suspension in liquids is a unit operation commonly encountered in the process industry. Although it is usually carried out in baffled stirred tanks, there are some specific applications where the presence of baffles may be undesirable. In the present work solid-liquid suspensions are investigated in a radially stirred unbaffled tank provided with a top cover. The minimum impeller speed at which all solid particles get suspended (Njs) and the relevant power requirements (Pjs) are assessed. The dependence of these two parameters on physical properties (liquid viscosity, particle concentration, and size) and system geometrical configurations (impeller diameter and clearance) is invest…
Scale-up and viscosity effects on gas–liquid mass transfer rates in unbaffled stirred tanks
Abstract The interest in the process industry on unbaffled stirred tanks has greatly expanded in the last years because they may bring about significant advantages in a number of applications, including biochemical, food and pharmaceutical processes where the presence of baffles is undesirable for several reasons. Despite their application potential, unbaffled vessels still lack fundamental information, due to the fact that only recently their capabilities have started being dug out. The lack of information on scale up effects is possibly the main reason hindering practical applications. In this work the influence of vessel size and liquid viscosity on the mass transfer performance in unbaf…
CFD Simulation of Particle Distribution in Stirred Vessels
In this work the particle concentration distribution in two-phase stirred tanks is simulated on the basis of information on the three-dimensional flow field, as obtained by numerical solution of the flow equations (CFD) using the well known k –ɛ « turbulence model. Two modelling approaches are attempted. In the simpler method the flow field is first simulated neglecting the influence of the solid phase; on the basis of the resulting flow field a very simple sedimentation model is employed for solving the solids mass balance equations in order to compute the particle concentration field. In this case no inertial effects on the solid particles are considered, so that the convective and diffus…
Pressure Retarded Osmosis: a Membrane Process for Environmental Sustainability
Salinity Gradient Power (SGP) based on the controlled mixing between two solutions at different salinities is a viable alternative to produce power from renewable sources. Pressure Retarded Osmosis (PRO) is one of the most promising technologies proposed so far for the exploitation of such energy source. Apart from the typical source of salinity gradients, namely river water and seawater, more and more interest has been raised recently towards the use of non-conventional saline solutions. In this work, water originating from a sewage treatment plant is used as the dilute solution (feed solution), while brine exiting from a desalination plant is used as the concentrate (draw solution), thus …
CFD simulation of a mixing-sensitive reaction in unbaffled vessels
Stirred tanks are widely used in the process industry, often to carry out complex chemical reactions. In many of such cases the perfect mixing hypothesis is not applicable for modelling purposes, and more detailed modelling approaches are required in order to accurately describe the reactor behaviour. In this work a fully predictive modelling approach, based on Computational Fluid Dynamics, is developed. Model predictions are compared with original experimental data obtained in un unbaffled stirred vessel with a parallel-competitive, mixing sensitive reaction scheme. Notably, satisfactory results are obtained at all injection rates with no recourse to micro-mixing model, thus confirming the…
Particle drag coefficients in turbulent fluids
Abstract An accurate estimation of particle settling velocities, and/or of particle drag coefficients, is required for modelling purposes in many industrially important multiphase processes involving the suspension of millimetre and sub-millimetre size particles in a liquid phase. It is known that the settling velocity of particles in a turbulent fluid may be significantly different from that in the still fluid, depending on turbulence and particle characteristics. Despite the wide range of processes that would benefit from a thorough understanding of this phenomenon, experimental data and reliable correlations are still lacking in the scientific literature, especially for the case of the a…
Reattore per la precipitazione di micro e nano-particelle
Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches
Abstract Numerical simulations of the flow field in baffled mixing tanks, based on three alternative methods, are presented and discussed. In the first method, the impeller is not explicitly simulated, and its effects are modelled by imposing suitable, empirically derived, boundary conditions to the external flow. In the second method, the whole vessel volume is divided into two concentric, partially overlapping, regions. In the inner region, containing the impeller, the flow field is simulated in the rotating reference frame of the latter, while in the outer region simulations are conducted in the reference frame of the laboratory. Information is iteratively exchanged between the two regio…
Slow pyrolysis of an LDPE/PP mixture: Kinetics and process performance
Abstract High- and low-density polyethylene (HDPE and LDPE) and polypropylene (PP) are the most common polymers among plastic waste as they have multiple commercial applications. This study focused on thermal degradation characteristics and kinetic of a plastic mixture with a composition of 92.5 wt% LDPE and 7.5% PP. Thermal decomposition characteristics of the plastic mixture was analysed through thermo-gravimetric analysis (TGA). The overall kinetic of the process was studied using the modified Coats−Redfern method and the Ozawa-Flynn-Wall (OFW) method. The apparent activation energy (E) and pre-exponential factor (A) obtained were 316.0 kJ/mol; 8.09E+21 min−1 and 311.5 kJ/mol; 4.35E+21 m…
Particle image velocimetry in a gas-sparged stirred tank
Influence of Viscosity on Mass Transfer Performance of Unbaffled Stirred Vessels
Unbaffled stirred tanks are seldom employed in the process industry as they are considered poorer mixers than baffled vessels. However they may be expected to provide significant advantages in a wide range of applications (e.g. crystallization, food and pharmaceutical processes, etc) where the presence of baffles is often undesirable. Moreover, in plants or animal cell cultivation bioreactors, where cell damage is often caused by bursting bubbles at the air –medium interface (Barret et al., 2010), they can provide sufficient mass transfer through the free surface vortex, so bubble formation and subsequent bursting inside the reactor can be conveniently avoided (Scargiali et al., 2012). In t…
AREA-TO-VOLUME DATA TRANSLATION IN THE MEASUREMENT OF BUBBLE SIZE DISTRIBUTIONS VIA LASER SHEET AND IMAGE ANALYSIS
Not available.