0000000000909532

AUTHOR

Martijn Rep

0000-0003-3608-6283

Degradation of aromatic compounds through the β-ketoadipate pathway is required for pathogenicity of the tomato wilt pathogenFusarium oxysporumf. sp.lycopersici

Plant roots react to pathogen attack by the activation of general and systemic resistance, including the lignification of cell walls and increased release of phenolic compounds in root exudate. Some fungi have the capacity to degrade lignin using ligninolytic extracellular peroxidases and laccases. Aromatic lignin breakdown products are further catabolized via the β-ketoadipate pathway. In this study, we investigated the role of 3-carboxy-cis,cis-muconate lactonizing enzyme (CMLE), an enzyme of the β-ketoadipate pathway, in the pathogenicity of Fusarium oxysporum f. sp. lycopersici towards its host, tomato. As expected, the cmle deletion mutant cannot catabolize phenolic compounds known to …

research product

The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth

Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is no…

research product