0000000000918110
AUTHOR
Jean-luc Baril
A Motzkin filter in the Tamari lattice
The Tamari lattice of order n can be defined on the set T n of binary trees endowed with the partial order relation induced by the well-known rotation transformation. In this paper, we restrict our attention to the subset M n of Motzkin trees. This set appears as a filter of the Tamari lattice. We prove that its diameter is 2 n - 5 and that its radius is n - 2 . Enumeration results are given for join and meet irreducible elements, minimal elements and coverings. The set M n endowed with an order relation based on a restricted rotation is then isomorphic to a ranked join-semilattice recently defined in Baril and Pallo (2014). As a consequence, we deduce an upper bound for the rotation distan…
A permutation code preserving a double Eulerian bistatistic
Visontai conjectured in 2013 that the joint distribution of ascent and distinct nonzero value numbers on the set of subexcedant sequences is the same as that of descent and inverse descent numbers on the set of permutations. This conjecture has been proved by Aas in 2014, and the generating function of the corresponding bistatistics is the double Eulerian polynomial. Among the techniques used by Aas are the M\"obius inversion formula and isomorphism of labeled rooted trees. In this paper we define a permutation code (that is, a bijection between permutations and subexcedant sequences) and show the more general result that two $5$-tuples of set-valued statistics on the set of permutations an…
Gray code for permutations with a fixed number of cycles
AbstractWe give the first Gray code for the set of n-length permutations with a given number of cycles. In this code, each permutation is transformed into its successor by a product with a cycle of length three, which is optimal. If we represent each permutation by its transposition array then the obtained list still remains a Gray code and this allows us to construct a constant amortized time (CAT) algorithm for generating these codes. Also, Gray code and generating algorithm for n-length permutations with fixed number of left-to-right minima are discussed.
Generalized Fibonacci permutations generation by the ECO method
International audience
Efficient generating algorithm for permutations with a fixed number of excedances
International audience
ECO-generation for p-generalized Fibonacci and Lucas permutations
International audience
Popularity of patterns over $d$-equivalence classes of words and permutations
Abstract Two same length words are d-equivalent if they have same descent set and same underlying alphabet. In particular, two same length permutations are d-equivalent if they have same descent set. The popularity of a pattern in a set of words is the overall number of copies of the pattern within the words of the set. We show the far-from-trivial fact that two patterns are d-equivalent if and only if they are equipopular over any d-equivalence class, and this equipopularity does not follow obviously from a trivial equidistribution.
Catalan and Schröder permutations sortable by two restricted stacks
Abstract Pattern avoiding machines were introduced recently by Claesson, Cerbai and Ferrari as a particular case of the two-stacks in series sorting device. They consist of two restricted stacks in series, ruled by a right-greedy procedure and the stacks avoid some specified patterns. Some of the obtained results have been further generalized to Cayley permutations by Cerbai, specialized to particular patterns by Defant and Zheng, or considered in the context of functions over the symmetric group by Berlow. In this work we study pattern avoiding machines where the first stack avoids a pair of patterns of length 3 and investigate those pairs for which sortable permutations are counted by the…
A CAT algorithm for generating permutations with a fixed number of excedances
International audience
Descent distribution on Catalan words avoiding a pattern of length at most three
Catalan words are particular growth-restricted words over the set of non-negative integers, and they represent still another combinatorial class counted by the Catalan numbers. We study the distribution of descents on the sets of Catalan words avoiding a pattern of length at most three: for each such a pattern $p$ we provide a bivariate generating function where the coefficient of $x^ny^k$ in its series expansion is the number of length $n$ Catalan words with $k$ descents and avoiding $p$. As a byproduct, we enumerate the set of Catalan words avoiding $p$, and we provide the popularity of descents on this set. Some of the obtained enumerating sequences are not yet recorded in the On-line En…
Avoiding patterns in irreducible permutations
We explore the classical pattern avoidance question in the case of irreducible permutations, <i>i.e.</i>, those in which there is no index $i$ such that $\sigma (i+1) - \sigma (i)=1$. The problem is addressed completely in the case of avoiding one or two patterns of length three, and several well known sequences are encountered in the process, such as Catalan, Motzkin, Fibonacci, Tribonacci, Padovan and Binary numbers. Also, we present constructive bijections between the set of Motzkin paths of length $n-1$ and the sets of irreducible permutations of length $n$ (respectively fixed point free irreducible involutions of length $2n$) avoiding a pattern $\alpha$ for $\alpha \in \{13…
Hamiltonian paths for involutions in the square of a Cayley graph
International audience
Right-jumps and pattern avoiding permutations
We study the iteration of the process "a particle jumps to the right" in permutations. We prove that the set of permutations obtained in this model after a given number of iterations from the identity is a class of pattern avoiding permutations. We characterize the elements of the basis of this class and we enumerate these "forbidden minimal patterns" by giving their bivariate exponential generating function: we achieve this via a catalytic variable, the number of left-to-right maxima. We show that this generating function is a D-finite function satisfying a nice differential equation of order~2. We give some congruence properties for the coefficients of this generating function, and we sho…
Equivalence classes of permutations modulo excedances
International audience
Representation of NURBS surfaces by Controlled Iterated Functions System automata
Iterated Function Systems (IFS) are a standard tool to generate fractal shapes. In a more general way, they can represent most of standard surfaces like Bézier or B-Spline surfaces known as self-similar surfaces. Controlled Iterated Function Systems (CIFS) are an extension of IFS based on automata. CIFS are basically multi-states IFS, they can handle all IFS shapes but can also manage multi self-similar shapes. For example CIFS can describe subdivision surfaces around extraordinary vertices whereas IFS cannot. Having a common CIFS formalism facilitates the development of generic methods to manage interactions (junctions, differences...) between objects of different natures.This work focuses…
Adjacent vertex distinguishing edge-colorings of meshes and hypercubes
International audience
Whole mirror duplication-random loss model and pattern avoiding permutations
International audience; In this paper we study the problem of the whole mirror duplication-random loss model in terms of pattern avoiding permutations. We prove that the class of permutations obtained with this model after a given number p of duplications of the identity is the class of permutations avoiding the alternating permutations of length p2+1. We also compute the number of duplications necessary and sufficient to obtain any permutation of length n. We provide two efficient algorithms to reconstitute a possible scenario of whole mirror duplications from identity to any permutation of length n. One of them uses the well-known binary reflected Gray code (Gray, 1953). Other relative mo…
Pattern distribution in faro words and permutations
International audience
More restrictive Gray code for (1,p)-compositions and relatives
International audience
Minimal change list for Lucas strings and some graph theoretic consequences
AbstractWe give a minimal change list for the set of order p length-n Lucas strings, i.e., the set of length-n binary strings with no p consecutive 1's nor a 1ℓ prefix and a 1m suffix with ℓ+m⩾p. The construction of this list proves also that the order p n-dimensional Lucas cube has a Hamiltonian path if and only if n is not a multiple of p+1, and its second power always has a Hamiltonian path.
Some unusual asymptotics for a variant of insertion sort
International audience
De l'existence d'arbres couvrants complètement disjoints dans les réseaux sans fil
International audience; Les arbres couvrants complètement disjoints (CIST) présentent un réel intérêt dans les réseaux, aussi bien pour des opérations d'augmentation de robustesse que d'équilibrage de charge, de fractionnement du trafic, ...Leur étude théorique a montré de nombreux challenges liés à leur calcul et leur quantification. Nous proposons ici une formulation ILP originale et montrons par des résultats de simulation sur des modèles représentatifs des réseaux sans fil que plusieurs CIST peuvent être calculés lorsque la densité du réseau est suffisamment élevée. Nous montrons que dans ce type de réseaux, la densité et le nombre de noeuds sont proportionnels au nombre de CIST qui peu…
Equipopularity of descent-equivalent patterns over descent-equivalence classes of words and permutations
The irregularity strength of circulant graphs
AbstractThe irregularity strength of a simple graph is the smallest integer k for which there exists a weighting of the edges with positive integers at most k such that all the weighted degrees of the vertices are distinct. In this paper we study the irregularity strength of circulant graphs of degree 4. We find the exact value of the strength for a large family of circulant graphs.
Catalan words avoiding pairs of length three patterns
Catalan words are particular growth-restricted words counted by the eponymous integer sequence. In this article we consider Catalan words avoiding a pair of patterns of length 3, pursuing the recent initiating work of the first and last authors and of S. Kirgizov where (among other things) the enumeration of Catalan words avoiding a patterns of length 3 is completed. More precisely, we explore systematically the structural properties of the sets of words under consideration and give enumerating results by means of recursive decomposition, constructive bijections or bivariate generating functions with respect to the length and descent number. Some of the obtained enumerating sequences are kn…
The pure descent statistic on permutations
International audience; We introduce a new statistic based on permutation descents which has a distribution given by the Stirling numbers of the first kind, i.e., with the same distribution as for the number of cycles in permutations. We study this statistic on the sets of permutations avoiding one pattern of length three by giving bivariate generating functions. As a consequence, new classes of permutations enumerated by the Motzkin numbers are obtained. Finally, we deduce results about the popularity of the pure descents in all these restricted sets. (C) 2017 Elsevier B.V. All rights reserved.
Motzkin subposets and Motzkin geodesics in Tamari lattices
The Tamari lattice of order n can be defined by the set D n of Dyck words endowed with the partial order relation induced by the well-known rotation transformation. In this paper, we study this rotation on the restricted set of Motzkin words. An upper semimodular join semilattice is obtained and a shortest path metric can be defined. We compute the corresponding distance between two Motzkin words in this structure. This distance can also be interpreted as the length of a geodesic between these Motzkin words in a Tamari lattice. So, a new upper bound is obtained for the classical rotation distance between two Motzkin words in a Tamari lattice. For some specific pairs of Motzkin words, this b…
More restrictive Gray codes for some classes of pattern avoiding permutations
In a recent article [W.M.B. Dukes, M.F. Flanagan, T. Mansour, V. Vajnovszki, Combinatorial Gray codes for classes of pattern avoiding permutations, Theoret. Comput. Sci. 396 (2008) 35-49], Dukes, Flanagan, Mansour and Vajnovszki present Gray codes for several families of pattern avoiding permutations. In their Gray codes two consecutive objects differ in at most four or five positions, which is not optimal. In this paper, we present a unified construction in order to refine their results (or to find other Gray codes). In particular, we obtain more restrictive Gray codes for the two Wilf classes of Catalan permutations of length n; two consecutive objects differ in at most two or three posit…
ECO-generation for some restricted classes of compositions
International audience; We study several restricted classes of compositions by giving one-to-one maps between them and different classes of restricted binary strings or pattern avoiding permutations. Inspired by the ECO method, new succession rules for these classes are presented. Finally, we obtain generating algorithms in Constant Amortized Time (CAT) for theses classes.
Pattern statistics in faro words and permutations
We study the distribution and the popularity of some patterns in $k$-ary faro words, i.e. words over the alphabet $\{1, 2, \ldots, k\}$ obtained by interlacing the letters of two nondecreasing words of lengths differing by at most one. We present a bijection between these words and dispersed Dyck paths (i.e. Motzkin paths with all level steps on the $x$-axis) with a given number of peaks. We show how the bijection maps statistics of consecutive patterns of faro words into linear combinations of other pattern statistics on paths. Then, we deduce enumerative results by providing multivariate generating functions for the distribution and the popularity of patterns of length at most three. Fina…
Force d'irrégularité des graphes circulants
National audience
Efficient lower and upper bounds of the diagonal-flip distance between triangulations
There remains today an open problem whether the rotation distance between binary trees or equivalently the diagonal-flip distance between triangulations can be computed in polynomial time. We present an efficient algorithm for computing lower and upper bounds of this distance between a pair of triangulations.
The pruning-grafting lattice of binary trees
AbstractWe introduce a new lattice structure Bn on binary trees of size n. We exhibit efficient algorithms for computing meet and join of two binary trees and give several properties of this lattice. More precisely, we prove that the length of a longest (resp. shortest) path between 0 and 1 in Bn equals to the Eulerian numbers 2n−(n+1) (resp. (n−1)2) and that the number of coverings is (2nn−1). Finally, we exhibit a matching in a constructive way. Then we propose some open problems about this new structure.
The Phagocyte Lattice of Dyck Words
We introduce a new lattice structure on Dyck words. We exhibit efficient algorithms to compute meets and joins of Dyck words.
Pattern avoiding permutations modulo pure descent
International audience
Gray code for derangements
AbstractWe give a Gray code and constant average time generating algorithm for derangements, i.e., permutations with no fixed points. In our Gray code, each derangement is transformed into its successor either via one or two transpositions or a rotation of three elements. We generalize these results to permutations with number of fixed points bounded between two constants.
Cyclic and lift closures for k…21-avoiding permutations
We prove that the cyclic closure of the permutation class avoiding the pattern k(k-1)...21 is finitely based. The minimal length of a minimal permutation is 2k-1 and these basis permutations are enumerated by (2k-1).c"k where c"k is the kth Catalan number. We also define lift operations and give similar results. Finally, we consider the toric closure of a class and we propose some open problems.
Gray code for permutations with exactly k-cycles
International audience
Pizza-cutter’s problem and Hamiltonian paths
Summary. The pizza-cutter’s problem is to determine the maximum number of pieces that can be made with n straight cuts through a circular pizza, regardless of the size and shape of the pieces. For ...
ECO generation for Fibonacci and Lucas permutations
International audience
Equivalence classes of permutations modulo descents and left-to-right maxima
Abstract In a recent paper [2], the authors provide enumerating results for equivalence classes of permutations modulo excedances. In this paper we investigate two other equivalence relations based on descents and left-to-right maxima. Enumerating results are presented for permutations, involutions, derangements, cycles and permutations avoiding one pattern of length three.
Grand Dyck paths with air pockets
Grand Dyck paths with air pockets (GDAP) are a generalization of Dyck paths with air pockets by allowing them to go below the $x$-axis. We present enumerative results on GDAP (or their prefixes) subject to various restrictions such as maximal/minimal height, ordinate of the last point and particular first return decomposition. In some special cases we give bijections with other known combinatorial classes.
Enumeration of Łukasiewicz paths modulo some patterns
Abstract For any pattern α of length at most two, we enumerate equivalence classes of Łukasiewicz paths of length n ≥ 0 where two paths are equivalent whenever the occurrence positions of α are identical on these paths. As a byproduct, we give a constructive bijection between Motzkin paths and some equivalence classes of Łukasiewicz paths.
Fibonacci q-decreasing words: enumerative results and Gray codes
Gray code for compositions of n with parts 1 and p
International audience
Counting Prefixes of Skew Dyck Paths
We present enumerative results on prefixes of skew Dyck paths by giving recursive relations, Riordan arrays, and generating functions, as well as closed formulas to count the total number of these paths with respect to the length, the height of its endpoint and the number of left steps.
Qubonacci words
International audience
Dyck paths with a first return decomposition constrained by height
International audience; We study the enumeration of Dyck paths having a first return decomposition with special properties based on a height constraint. We exhibit new restricted sets of Dyck paths counted by the Motzkin numbers, and we give a constructive bijection between these objects and Motzkin paths. As a byproduct, we provide a generating function for the number of Motzkin paths of height k with a flat (resp. with no flats) at the maximal height. (C) 2018 Elsevier B.V. All rights reserved.KeywordsKeyWords Plus:STATISTICS; STRINGS
Motzkin Paths With a Restricted First Return Decomposition
International audience
Equivalence classes of Dyck paths modulo some statistics
International audience; We investigate new equivalence relations on the set $\mathcal{D}_n$ of Dyck paths relatively to the three statistics of double rises, peaks and valleys. Two Dyck paths ar $r$-equivalent (resp. $p$-equivalent and $v$-equivalent) whenever the positions of their double rises (res. peaks and valleys) are the same. Then, we provide generating functions for the numbers of $r$-, $p$- and $v$-equivalence classes of $\mathcal{D}_n$.
Statistics-preserving bijections between classical and cyclic permutations
Recently, Elizalde (2011) [2] has presented a bijection between the set C"n"+"1 of cyclic permutations on {1,2,...,n+1} and the set of permutations on {1,2,...,n} that preserves the descent set of the first n entries and the set of weak excedances. In this paper, we construct a bijection from C"n"+"1 to S"n that preserves the weak excedance set and that transfers quasi-fixed points into fixed points and left-to-right maxima into themselves. This induces a bijection from the set D"n of derangements to the set C"n"+"1^q of cycles without quasi-fixed points that preserves the weak excedance set. Moreover, we exhibit a kind of discrete continuity between C"n"+"1 and S"n that preserves at each s…
Asymptotic bit frequency in Fibonacci words
It is known that binary words containing no $k$ consecutive 1s are enumerated by $k$-step Fibonacci numbers. In this note we discuss the expected value of a random bit in a random word of length $n$ having this property.
Efficient generating algorithms for some combinatorial object classes
International audience
Gray codes for order p Lucas strings
International audience
Neighbor-Distinguishing k-tuple Edge-Colorings of Graphs
AbstractThis paper studies proper k-tuple edge-colorings of graphs that distinguish neighboring vertices by their sets of colors. Minimum numbers of colors for such colorings are determined for cycles, complete graphs and complete bipartite graphs. A variation in which the color sets assigned to edges have to form cyclic intervals is also studied and similar results are given.
Classical sequences revisited with permutations avoiding dotted pattern
International audience; Inspired by the definition of the barred pattern-avoiding permutation, we introduce the new concept of dotted pattern for permutations. We investigate permutations classes avoiding dotted patterns of length at most 3, possibly along with other classical patterns. We deduce some enumerating results which allow us to exhibit new families of permutations counted by the classical sequences: 2^n, Catalan, Motzkin, Pell, Fibonacci, Fine, Riordan, Padovan, Eulerian.
Matchings in three Catalan lattices
In this note we consider a series of lattices that are enumerated by the well-known Catalan numbers. For each of these lattices, we exhibit a matching in a constructive way.
Forests and pattern-avoiding permutations modulo pure descents
Abstract We investigate an equivalence relation on permutations based on the pure descent statistic. Generating functions are given for the number of equivalence classes for the set of all permutations, and the sets of permutations avoiding exactly one pattern of length three. As a byproduct, we exhibit a permutation set in one-to-one correspondence with forests of ordered binary trees, which provides a new combinatorial class enumerated by the single-source directed animals on the square lattice. Furthermore, bivariate generating functions for these sets are given according to various statistics.
Permutations avoiding generalized patterns modulo left-to-right maxima
International audience