0000000000929549
AUTHOR
J.m. Alarcón
Improved description of the -scattering phenomenology at low energies in covariant baryon chiral perturbation theory
Abstract We present a novel analysis of the π N scattering amplitude in covariant baryon chiral perturbation theory up to O ( p 3 ) within the extended-on-mass-shell renormalization scheme and including the Δ ( 1232 ) explicitly in the δ -counting. We take the hadronic phase shifts provided by partial wave analyses as basic experimental information to fix the low-energy constants. Subsequently, we study in detail the various observables and low-energy theorems related to the π N scattering amplitude. In particular, we discuss the results and chiral expansion of the phase shifts, the threshold coefficients, the Goldberger–Treiman relation, the pion–nucleon sigma term and the extrapolation on…
Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis
The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M_\pi^{-1}) using methods of relativistic chiral effective field theory (\chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M_\pi^2 are calculated using relativistic \chi EFT including octet and decuplet baryons.…