6533b871fe1ef96bd12d26f9

RESEARCH PRODUCT

Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis

A. N. Hiller BlinM. J. Vicente VacasChristian WeissJ.m. AlarcónJ.m. Alarcón

subject

Nuclear and High Energy PhysicsParticle physicsMesonNuclear TheoryIsoscalarHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)PionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesVector meson010306 general physicsNuclear ExperimentPhysicsIsovector010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)HyperonForm factor (quantum field theory)BaryonHigh Energy Physics - PhenomenologyQuantum electrodynamicsHigh Energy Physics::Experiment

description

The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M_\pi^{-1}) using methods of relativistic chiral effective field theory (\chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M_\pi^2 are calculated using relativistic \chi EFT including octet and decuplet baryons. The \chi EFT calculations are extended into the \rho meson mass region using an N/D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.

https://dx.doi.org/10.48550/arxiv.1703.04534