0000000000934006

AUTHOR

Jean-paul Champion

2nu3 band of 12CF4 and its simultaneous analysis with nu3

Abstract A nearly Doppler-limited spectrum of the 2ν 3 band of the 12 CF 4 molecule between 2536.0 and 2599.8 cm −1 was recorded at T = 77 K using difference-frequency laser spectroscopy. The simultaneous analysis of the ground (G.S.), ν 3 = 1, and ν 3 = 2 states was performed using an isolated band model to sixth order in the tetrahedral formalism. Fourteen hundred seventy-five transitions were assigned through J = 35 to the F 2 and E vibrational components of the ν 3 = 2 level. A total of 1864 transition frequencies were fit simultaneously (1000 2ν 3 - G.S. newly assigned transitions together with 575 ν 3 - G.S. and 289 ν 3 - ν 3 transitions already reported in the literature). The ground…

research product

Analyse Globale en Fréquences et en Intensités des Raies de 12CH4 dans la Région 0–4800 cm-1

research product

Le méthane dans l'atmosphère de Titan. De la spectroscopie fondamentale à la planétologie

Le méthane (CH4) joue sur Tian, le plus gros satellite de Saturne, un rôle similaire à celui de l'eau sur Terre. Il y est de plus à l'origine d'une chimie organique complexe. La spectroscopie étant la technique privilégiée pour mesurer le CH4 dans les atmosphères planétaires, des modèles précis de l'absorption de la lumière par cette molécule doivent être développés. Les résultats récents obtenus dans ce domaine à l'Institut Carnot de Bourgogne, en collaboration étroite avec des planétologues, permettent notamment de contribuer à l'interprétation des résultats de la mission Cassini-Huygens.

research product

New measurements and global analysis of chloromethane in the region from 0 to 1800cm−1

Abstract New high resolution Fourier transform spectra of pure 12CH335Cl and 12CH337Cl isotopomers of chloromethane have been recorded in Wuppertal covering the region from 600 to 3800 cm−1. New rotational transitions within the v2=1, v5=1, and v3=2 states have been measured at Lille. A first global analysis of the lower four band systems of the molecule (700–1800 cm−1) is reported. The model was based on an effective Hamiltonian and dipole moment expressed in terms of irreducible tensor operators. A common set of 125 effective hamiltonian parameters (sixth order) has been adjusted to fit simultaneously some 11 000 IR data for each of the isotopomers including 153 mm wave data for 12 CH3 35…

research product

Global analysis of 12CH335Cl and 12CH337Cl: simultaneous fit of the lower five polyads (0–2600cm−1)

Abstract The global analysis of the infrared spectrum of chloromethane involving the ground state and the 13 vibrational states lying up to 2600 cm −1 is reported. This work incorporates and extends to the fifth polyad, the preliminary study of the lower four polyads published by [J. Mol. Spectrosc. 221 (2003) 199]. More than 20 000 transitions (including numerous hot bands) for each isotopomer 12 CH 3 35 Cl and 12 CH 3 37 Cl have been assigned and fitted with a standard deviation of about 3 × 10 −4  cm −1 close to the experimental precision. A common set of 288 (resp. 303) effective parameters was determined for each isotopomer. Our global model allowed us to reproduce simultaneously and a…

research product

Spherical Top Spectra

research product

Etat de l'Art des Analyses Raie par Raie des Spectres du Méthane

research product

Improved Algorithms for the Modeling of Vibrational Polyads of Polyatomic Molecules: Application toT,O, andC3Molecules

Abstract Improved algorithms for the construction of rovibrational operators of polyatomic molecules are presented. Vibrationally diagonal and off-diagonal terms are obtained by a specific coupling scheme of creation and annihilation elementary operators. Recursive procedures are used to generate all possible terms and associated basis functions as well as to calculate matrix elements and commutators. Explicit formulations are given forTd,Oh, andC3vmolecules.

research product

The partition sum of methane at high temperature

11 pages, 4 Tables, 3 Figures Computer code on line at http://icb.u-bourgogne.fr/JSP/TIPS.jsp; International audience; The total internal partition function of methane is revisited to provide reliable values at high temperature. A multi-resolution approach is used to perform a direct summation over all the rovibrational energy levels up to the dissociation limit. A computer code is executable on line at the URL : http://icb.u-bourgogne.fr/JSP/TIPS.jsp to allow the calculation of the partition sum of methane at temperatures up to 3000 K. It also provides detailed information on the density of states in the relevant spectral ranges. The recommended values include uncertainty estimates. It is …

research product

The Pentad and the Octad of 13CH4: Lines in the 2200–4700 cm-1 Region

International audience

research product

Microwave Fourier Transform Spectroscopy of Rovibrational Transitions in the ν 2 /ν 4 Dyads of Methane- 12 C and - 13 C

The ν2/ν4 dyad-dyad spectra of 12CH4 and 13CH4 molecules in the (8÷20) GHz region have been predicted including line strengths. All transitions with γmax > 810-12 cm-1 have been observed directly using a MWFT spectrometer: six F-type transitions for 12CH4 and nine for 13CH4.

research product

The MIRS computer package for modeling the rovibrational spectra of polyatomic molecules

International audience; The MIRS spectroscopic software for the modeling of ro-vibrational spectra of polyatomic molecules is presented. It is designed for the global treatment of complex band systems of molecules to take full account of symmetry properties. It includes e cient algorithms based on the irreducible tensor formalism. Predictions and simultaneous data fi tting (positions and intensities) are implemented as well as advanced options related to group theory algebra. Illustrative examples on CH3D, CH4, CH3Cl and PH3 are reported and the present status of data available is given. It is written in C++ for standard PC computer operating under Windows. The full package including on-lin…

research product

Line intensities of CH3D in the Triad region: 6–10μm

Abstract Line intensities of the three lowest fundamentals of the 12CH3D Triad are modeled with an RMS of 3.2% using over 2100 observed values retrieved by multispectrum fitting of enriched sample spectra recorded with two Fourier transform spectrometers. The band strengths of the Triad in units of 10−18 cm−1/(molecule cm−2) at 296 K are, respectively, 2.33 for ν6 (E) at 1161 cm−1, 1.75 for ν3 (A1) at 1307 cm−1 and 0.571 for ν5 (E) at 1472 cm−1. The total calculated absorption arising from 12CH3D Triad fundamentals is 4.65×10−18 cm−1/(molecule cm−2) at 296 K. In addition, some 740 intensities of nine hotbands are fitted to 8.1%; most of the hotband measurements belong to 2ν6−ν6 and ν3+ν6−ν3…

research product

Symmetry-adapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups

International audience; We present a short review on the tensorial formalism developed by the Dijon group to solve molecular spectroscopy problems. This approach, originally devoted to the rovibrational spectroscopy of highly symmetrical species (spherical tops) has been recently extended in several directions: quasi-spherical tops, some symmetric and asymmetric tops, and rovibronic spectroscopy of spherical tops in a degenerate electronic state. Despite its apparent complexity (heavy notations, quite complex mathematical tools), these group theoretical tensorial methods have a great advantage of flexibility: a systematic expansion of effective terms for any rovib- rational/rovibronic probl…

research product

Measurement of rotational relaxation in the ground state of methane perturbed by argon at low temperature

International audience; Relaxation processes at low temperature in methane perturbed by argon have been investigated on the basis of new measurements. Diode laser absorption spectra of methane in the region of the dyad nu2/nu4 in supersonic expansions have been recorded. The time of relaxation of the ground state mean rotational energy was derived from the observed dependences of the rotational temperature on the concentration in the jet. A semi-classical model was used to calculate the state-to-state relaxation rate constants at room temperature. The evaluation of the time of relaxation of the mean rotational energy using semi-empirical temperature dependence laws is presented and discusse…

research product

Extension of the MIRS computer package for the modeling of molecular spectra : from effective to full ab initio ro-vibrational hamiltonians in irreducible tensor form

The MIRS software for the modeling of ro-vibrational spectra of polyatomic molecules was considerably extended and improved. The original version (Nikitin, et al. JQSRT, 2003, pp. 239--249) was especially designed for separate or simultaneous treatments of complex band systems of polyatomic molecules. It was set up in the frame of effective polyad models by using algorithms based on advanced group theory algebra to take full account of symmetry properties. It has been successfully used for predictions and data fitting (positions and intensities) of numerous spectra of symmetric and spherical top molecules within the vibration extrapolation scheme. The new version offers more advanced possib…

research product

Spectroscopic tools for remote sensing of greenhouse gases CH4, CF4 and SF6

International audience; Highly symmetrical molecules such as CH4, CF4 or SF6 are known to be atmospheric pollutants and greenhouse gases. High-resolution spectroscopy in the infrared is particularly suitable for the monitoring of gas concentration and radiative transfers in the earth's atmosphere. This technique requires extensive theoretical studies for the modeling of the spectra of such molecules (positions, intensities and shapes of absorption lines). Here, we have developed powerful tools for the analysis and the simulation of absorption spectra of highly symmetrical molecules. These tools have been implemented in the spherical top data system (STDS) and highly-spherical top data syste…

research product

Pressure‐induced widths and shifts for the ν3 band of methane

International audience; Widths and shifts of methane lines perturbed by nitrogen are calculated using a complex-valued implementation of Robert-Bonamy (RB) theory. The static intermolecular potential is described as a sum of electrostatic forces and Lennard-Jones (6-12) atom-atom terms, using literature values for all physical parameters. Vibrational dependence of the isotropic potential is obtained from the polarizability of methane assuming a dispersion interaction. The repulsive part of the Lennard-Jones accounts for the greatest part of widths, while dispersion interactions are largely responsible for shifts. Although the average error between calculated and observed linewidths (up to J…

research product

Towards simulation of high temperature methane spectra

Methane plays a central role in gas layers of temperatures up to around 3000 K in a number of astrophysical objects ranging from giant planets to brown dwarfs, over proto-solar nebulae, to several classes of cool stars. In order to model and analyse these objects correctly, an accurate and complete list of spectral lines at high temperature is demanded. Predicting high temperature spectra implies, however, predicting hot bands and thus modelling highly excited vibrational states. This is a real challenge in the case of methane. We report the preliminary results of a theoretical study combining the global effective Hamiltonian approach and its computational implementation (STDS package: http…

research product

Multi-Resolution error analysis of predicted absorption coefficients. Method and application to the infrared spectrum of methane at high temperature.

La version V2 inclut les modifications proposées par les reviewers.; International audience; A general method for the estimation of the confidence interval of molecular absorption coefficients is presented. Statistical numerical experiments are implemented to quantify the propagation of errors from line parameters to absorption coefficients or cross-sections as a function of the resolution. The method uses line parameter predictions (position and intensity) with estimated uncertainties derived from global polyad models. This work is especially intended to provide expert information for applications requiring theoretical predictions for which the present state of the art of line by line high…

research product

Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman nu(1) band

International audience; The shape of the nu(1) Raman Q branch of CH4 perturbed by Ar and He at room temperature has been studied. Stimulated Raman spectroscopy (SRS) experiments have been made in the 2915-2918 cm(-1) spectral region for total pressures from 0.4 to 70 atm and mixtures of approximate to 5% CH4 with He and Ar. Analysis of the spectra demonstrates that the shape of the Q branch is significantly influenced by line mixing and much narrower than what is predicted by the addition of individual line profiles. For the first time, a model is proposed for the calculation and analysis of the effects of collisions on the considered spectra. In this approach, the rotational part of the re…

research product

Le méthane dans l’atmosphère de Titan - De la spectroscopie fondamentale à la planétologie

Le methane (CH4) joue sur Tian, le plus gros satellite de Saturne, un role similaire a celui de l'eau sur Terre. Il y est de plus a l'origine d'une chimie organique complexe. La spectroscopie etant la technique privilegiee pour mesurer le CH4 dans les atmospheres planetaires, des modeles precis de l'absorption de la lumiere par cette molecule doivent etre developpes. Les resultats recents obtenus dans ce domaine a l'Institut Carnot de Bourgogne, en collaboration etroite avec des planetologues, permettent notamment de contribuer a l'interpretation des resultats de la mission Cassini-Huygens.

research product

The infrared spectrum of CH 3 D between 900 and 3200 cm −1 : extended assignment and modeling

Abstract The high resolution infrared spectrum of CH 3 D in the region from 900 to 3200 cm −1 has been analyzed on the basis of Fourier transform spectra recorded at Kitt Peak and at Giessen. A theoretical model for an effective hamiltonian in terms of irreducible tensor operators recently adapted to symmetric top molecules has been used in order to consider simultaneously all available transitions between the lowest three polyads of the molecule: the Ground State (G.S.), the Triad (three interacting fundamental bands in the 8 μm region) and the Nonad (nine interacting bands in the 4 μm region). A preliminary simultaneous fit of 3467 Triad–G.S., 5208 Nonad–G.S., and 2487 Nonad–Triad (hot ba…

research product

Highly-spherical Top Data System (HTDS) software for spectrum simulation of octahedral XY6 molecules

Abstract The Spherical Top Data System (STDS) program suite developed in Dijon has been extended into two directions. First, the vibrational extrapolation is now possible for any kind of polyad scheme, this one being fully specified in the input parameters of the programs for hamiltonian and transition moment model calculations. This was not the case of the preceding version which was based on the polyad scheme of methane. Secondly, it is now possible to study any band and polyad of XY 6 molecule for which a complete treatment in the O h group is made. Up to now, only some vibrational levels of these molecules ( F 1u levels in particular) could be studied using equivalences with the T d gro…

research product

High-temperature emission spectroscopy of methane

International audience; A high-enthalpy source (HES) has been developed in Rennes either to heat gases up to 2000K in local thermodynamic equilibrium (LTE) or to generate hypersonic expansions. The HES prototype has been associated with a high-resolution Bruker IFS 120 HR Fourier transform spectrometer to record emission spectra of hot gases, in LTE conditions. A series of emission spectra of methane has been obtained at 1005, 1365, 1485, 1625 and 1820K in the pentad spectral region located around 3000 cm1, at Doppler-limited resolution (0.02 cm1). Spectra have been corrected for the transmission function that strongly affects the infrared radiation emitted by the hot gas. Line-integrated a…

research product

Analysis of the CH3D Nonad from 2000 to 3300 cm−1

As part of the simultaneous analysis of line positions and intensities of the first two polyads of monodeuterated methane, the results achieved for the 3 to 5 mu m region are reported.

research product

First Assignment and Line Strengths of the 4ν4 Band of 12CH4 near 1.9 μm

Abstract The investigation of the methane spectrum in the region 1.6–2 μm has provided the first assignment and analysis of the 4ν 4 band near 1.9 μm. Hamiltonian and dipole moment operators written in tetrahedral formalism and adapted to the extrapolation method have been used to fit the spectra recorded at the Kitt Peak National Observatory/National Solar Observatory. Nearly 190 line positions and 160 measured intensities have been modeled with standard deviations of 0.107 cm −1 and 18.5%, respectively.

research product

The 1997 spectroscopic GEISA databank

International audience; The current version GEISA-97 of the computer-accessible database system GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) is described. This catalogue contains 1,346,266 entries. These are spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located between 0 and 22,656 cm-1. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. GEISA-97 contains also a catalog of absorption cross-sections of molecule…

research product

Spherical top data system (STDS) software for the simulation of spherical top spectra

Abstract The Spherical Top Data System (STDS) software package for the simulation of spherical top spectra is presented. It consists of a single UNIX script with self-explanatory arguments allowing the non-expert user to calculate spectra from the results of the high resolution analyses performed over the recent decades on this type of molecules. More than one hundred parameter files are presently available including various band systems of 16 molecular species (among which methane is the most documented) and various types of calculations: rovibrational energy levels, i.r. absorption, Raman scattering and Stark coefficients. STDS is freely accessible by anonymous ftp at jupiter.u-bourgogne.…

research product

Preliminary-Analysis of the Pentad of 13CH4 from Raman and Infrared-Spectra

0022-2852

research product

XTDS and SPVIEW: Graphical tools for the analysis and simulation of high-resolution molecular spectra

International audience; XTDS is a Java front-end to the different programs implementing the tensorial formalism developed in the Dijon group [see for instance: V. Boudon, J.-P. Champion, T. Gabard, M. Loëte, F. Michelot, G. Pierre, M. Rotger, Ch. Wenger, M. Rey, J. Mol. Spectrosc. 228 (2004) 620–634 ]. It allows the simulation and analysis of polyad systems for molecules of various symmetries (Td and Oh spherical tops like CH4 and SF6, C2v and C4v quasi-spherical tops like SO2F2 and SF5Cl, D2h molecules like C2H4). SPVIEW is a multiplatform Java application that allows graphical assignment of high-resolution molecular spectra. It is possible to load, display and manipulate experimental and …

research product

Global Analysis of CH4 Lines in the 0–3200 cm-1 Region

International audience

research product

13CH4 in the 2200–4700 cm-1 Region The Pentad and the Octad

research product

Preliminary analysis of CH3D from 3250 to 3700 cm(-1)

International audience; The infrared spectrum of CH3D from 3250 to 3700 cm(-1) was studied for the first time to assign transitions involving the nu(2) + nu(3), nu(2) + nu(5), nu(2) + nu(6), nu(3) + 2(nu 6) and 3 nu(6) vibrational states. Line positions and intensities were measured at 0.011 cm(-1) resolution using Fourier transform spectra recorded at Kitt Peak with isotopically enriched samples. Some 2852 line positions (involving over 900 upper state levels) and 874 line intensities were reproduced with RMS values of 0.0009 cm(-1) and 4.6%, respectively. The strongest bands were found to be nu(2) + nu(3) at 3499.7 cm(-1) and nu(2) + nu(6) at 3342.5 cm(-1) with integrated strengths, respe…

research product

Global Frequency and Infrared Intensity Analysis of 12CH4 Lines in the 900–4800 cm-1 Region

research product

Global modeling of the lower three polyads of PH_{3} Preliminary results

International audience; In order to model the high-resolution infrared spectrum of the phosphine molecule in the 3 mu m region, a global approach involving the lower three polyads of the molecule (Dyad, Pentad and Octad) as been applied using an effective hamiltonian in the form of irreducible tensors. This model allowed to describe all the 15 vibrational states involved and to consider explicitly all relevant ro-vibrational interactions that cannot be accounted for by conventional perturbation approaches. 2245 levels (up to J=14) observed through transitions arising from 34 cold and hot bands including all available existing data as well as new experimental data have been fitted simultaneo…

research product

Multi-resolution investigations of the methane IR spectrum. At the borderline between modelling state of the art and astrophysical needs

International audience; Remote sensing of the atmosphere of astrophysical objects relies essentially on molecular spectroscopy. Astrophysical investigations generally need both complete and accurate spectroscopic databases. Despite continuous efforts in experimental and theoretical spectroscopic investigations, the lack of data in specific spectral regions of interest is one of the principal limitation of the presently available spectroscopic databases. Extrapolations to relevant experimental conditions like high temperature is also a major issue for astrophysical applications. Among other molecules, methane is present in the atmosphere of many astrophysical objects. The modeling of its abs…

research product

Current status of the global modeling of the lower three polyads of PH3 (position and intensities)

As part of extensive efforts to support remote sensing of Jupiter and Saturn many works have been devoted to the high-resolution infrared spectrum of phosphine. However, at present, the line parameters of phosphine (positions and intensities) in the 3 \mu m region rely essentially on the empirical database reported in 2006. So far, only weakly interacting features could be fitted using isolated band models while strongly interacting states were left out. The goal of the present work is to achieve a comprehensive modeling of the lower three polyads of the molecule. The simultaneous analysis of the dyad, pentad and octad of PH_3 has been undertaken using an effective hamiltonian in the form o…

research product

The Intensities of Methane in the 3–5 μm Region Revisited

The analysis of the linestrengths of the infrared spectrum of methane (12 and 13) in the 3-5 µm region has been revisited on the basis of new measurements from Fourier transform spectra recorded at Kitt Peak under various optical densities. A simultaneous fit of these new data with previously reported tunable difference-frequency laser data has been done. An effective transition moment model in tensorial form up to the third order of approximation within the Pentad scheme has been used. The standard deviations achieved are very close to the experimental precision: 3 and 1.5%, respectively, for the two sets of data for the (12)CH(4) molecule, representing a substantial improvement with respe…

research product

Fonction de partition du methane à haute température

research product

Methane line parameters in HITRAN

Abstract Two editions of the methane line parameters (line positions, intensities and broadening coefficients) available from HITRAN in 2000 and 2001 are described. In both versions, the spectral interval covered was the same (from 0.01 to 6184.5 cm −1 ), but the database increased from 48,033 transitions in 2000 to 211,465 lines in 2001 because weaker transitions of 12 CH 4 and new bands of 13 CH 4 and CH3D were included. The newer list became available in 2001 in the “Update” section of HITRAN. The sources of information are described, and the prospects for future improvements are discussed.

research product

Calculated Line Broadening Coefficients in the nu2 Band of CH3D Perturbed by Helium

International audience; Line broadening coefficients have been calculated, at room temperature, for lines in the P and R branches of the nu2 band of monodeuterated methane. A properly symmetrized semiclassical model with parabolic relative trajectories has been used. Two interaction potential models have been considered. The first is a Lennard-Jones type atom-atom potential, while the second one was derived from ab initio calculations. The calculated line widths were compared to the available experimental data and a satisfactory agreement was found, although the model contains no other adjustable parameters than the four atomic Lennard-Jones ones. Nonetheless, failures of calculations have …

research product

Line parameters and shapes of high clusters: R-branch of the nu3 band of CH4 in He mixtures

International audience; The IR absorption spectra of CH4 in pure gas and in mixture with helium were studied in the region of nu3 band at higher J line clusters R(17)-R(22). The frequencies and intensities of rotation-vibration lines were estimated from the experimental spectra at Doppler shape conditions. The line frequencies and intensities were calculated and used for the attribution of overlapped lines in clusters. The calculated line intensities are close to the experimental values. The calculated frequency structure of the higher J manifolds are somewhat wider than the observed one. The shapes of helium-broadened line clusters were compared with those calculated accounting for line mi…

research product

New ground state constants of 12CH335Cl and 12CH337Cl from global polyad analysis

Abstract A global analysis of the infrared spectrum of chloromethane involving the ground state and the 13 vibrational states lying up to 2600 cm −1 was recently achieved using high resolution Fourier transform spectra of pure isotopomers. More than 20 000 transitions (cold and hot bands) for each isotopomer 12 CH 3 35 Cl and 12 CH 3 37 Cl have been assigned and fitted with a standard deviation of about 3 × 10 −4  cm −1 close to the experimental precison. As part of this global effort, improved ground state constants up to sextic centrifugal distortion terms have been determined for each isotopomer taking advantage of the numerous allowed and perturtation-allowed transitions simultaneously …

research product

Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman ν1 band

The shape of the ν1 Raman Q branch of CH4 perturbed by Ar and He at room temperature has been studied. Stimulated Raman spectroscopy (SRS) experiments have been made in the 2915–2918 cm−1 spectral region for total pressures from 0.4 to 70 atm and mixtures of ≈5% CH4 with He and Ar. Analysis of the spectra demonstrates that the shape of the Q branch is significantly influenced by line mixing and much narrower than what is predicted by the addition of individual line profiles. For the first time, a model is proposed for the calculation and analysis of the effects of collisions on the considered spectra. In this approach, the rotational part of the relaxation matrix is constructed, with no adj…

research product

Spherical Top Theory and Molecular Spectra

In this article, we present an overview of the present state of the art of the theory of high-resolution spherical-top spectra in the framework of the effective Hamiltonian approach. We describe the specific features of this class of molecules to explain the basic concepts of the theoretical methods used for the analysis (line positions and intensities) and the simulation of absorption (including pure rotation) and Raman spectra of such species. The non conventional formalism that we use is essentially based on irreducible tensor methods and is especially adapted to computational treatments and global analyses of complex interacting band systems. We give examples concerning mainly methane (…

research product

Preliminary analysis of the pentad of 13CH4 from Raman and infrared spectra

Abstract Preliminary results on the simultaneous analysis of infrared and Raman data of 13 CH 4 in the 3-μm region ( ν 1 , ν 3 , 2 ν 2 , ν 2 + ν 4 , and 2 ν 4 ) are presented. The infrared spectrum of 13 CH 4 (90% enriched) has been recorded with the Fourier transform spectrometer at Kitt Peak National Observatory. Line positions have been measured with a relative accuracy of 0.0001 cm −1 (for well-isolated lines) using 0.0118-cm −1 resolution spectra. In order to compensate for the lack of infrared information about low J transitions of vibrational bands forbidden in infrared, two spectra of the ν 1 ( A 1 ) and 2 ν 2 ( A 1 ) Q branches have been recorded in Dijon by inverse Raman spectrosc…

research product

The High Resolution Infrared Spectrum of CH3D in the Region 900–1700 cm−1

The high resolution absorption spectrum of CH(sub 3)D in the region of 900-1700 cm(sup -1) has been revisited on the basis of new long path experimental data recorded with the Fourier transform spectrometer at Kitt Peak. A theoretical model used previously for spherical rotors has been adapted for polyatomic molecules in order to analyze the vibrational polyads of CH(sub 3)D simultaneously.

research product

Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm-1

International audience; We report the global analysis of methane (12CH4) lines from high resolution rovibrational spectra including accurate line positions and intensities in the region 0–4800 cm−1. This covers four polyads: The Ground State Monad (rotational levels), the Dyad (940–1850 cm−1, 2 vibrational levels, 2 sublevels), the Pentad (2150–3350 cm−1, 5 vibrational levels, 9 sublevels) and the Octad (3550–4800 cm−1, 8 vibrational levels, 24 sublevels) and some of the associated hot bands (Pentad−Dyad and Octad−Dyad). New Fourier transform infrared (FTIR) spectra of the Pentad and Octad regions have been recorded with a very high resolution (better than 0.001 cm−1 instrumental bandwidth,…

research product