0000000000934744

AUTHOR

Thomas Michael Keller

0000-0003-3901-8585

showing 2 related works from this author

Fixed point spaces, primitive character degrees and conjugacy class sizes

2006

Let G be a finite group that acts on a nonzero finite dimensional vector space V over an arbitrary field. Assume that V is completely reducible as a G-module, and that G fixes no nonzero vector of V. We show that some element g ∈ G has a small fixed-point space in V. Specifically, we prove that we can choose g so that dim C V (g) < (1/p)dim V, where p is the smallest prime divisor of |G|.

AlgebraCombinatoricsFinite groupCharacter (mathematics)Conjugacy classApplied MathematicsGeneral MathematicsPrime factorField (mathematics)Fixed pointSpace (mathematics)MathematicsVector spaceProceedings of the American Mathematical Society
researchProduct

Transitive permutation groups in which all derangements are involutions

2006

AbstractLet G be a transitive permutation group in which all derangements are involutions. We prove that G is either an elementary abelian 2-group or is a Frobenius group having an elementary abelian 2-group as kernel. We also consider the analogous problem for abstract groups, and we classify groups G with a proper subgroup H such that every element of G not conjugate to an element of H is an involution.

CombinatoricsSubgroupAlgebra and Number TheorySymmetric groupPrimitive permutation groupElementary abelian groupAbelian groupFrobenius groupCyclic permutationMathematicsNon-abelian groupJournal of Pure and Applied Algebra
researchProduct