6533b853fe1ef96bd12ac05b

RESEARCH PRODUCT

Fixed point spaces, primitive character degrees and conjugacy class sizes

I. M. IsaacsThomas Michael KellerU. MeierfrankenfeldAlexander Moretó

subject

AlgebraCombinatoricsFinite groupCharacter (mathematics)Conjugacy classApplied MathematicsGeneral MathematicsPrime factorField (mathematics)Fixed pointSpace (mathematics)MathematicsVector space

description

Let G be a finite group that acts on a nonzero finite dimensional vector space V over an arbitrary field. Assume that V is completely reducible as a G-module, and that G fixes no nonzero vector of V. We show that some element g ∈ G has a small fixed-point space in V. Specifically, we prove that we can choose g so that dim C V (g) < (1/p)dim V, where p is the smallest prime divisor of |G|.

https://doi.org/10.1090/s0002-9939-06-08383-3