0000000000936306

AUTHOR

Christian Rischel

Glucagon fibril polymorphism reflects differences in protofilament backbone structure

Amyloid fibrils formed by the 29-residue peptide hormone glucagon at different concentrations have strikingly different morphologies when observed by transmission electron microscopy. Fibrils formed at low concentration (0.25 mg/mL) consist of two or more protofilaments with a regular twist, while fibrils at high concentration (8 mg/mL) consist of two straight protofilaments. Here, we explore the structural differences underlying glucagon polymorphism using proteolytic degradation, linear and circular dichroism, Fourier transform infrared spectroscopy (FTIR), and X-ray fiber diffraction. Morphological differences are perpetuated at all structural levels, indicating that the two fibril class…

research product

The kinetic behavior of insulin fibrillation is determined by heterogeneous nucleation pathways

When subjected to acidic conditions and high temperature, insulin is known to produce fibrils that display the common properties of disease amyloids. Thus, clarifying the mechanisms of insulin fibrillation can help the general understanding of amyloidal aggregation. Insulin fibrillation exhibits a very sharp time dependence, with a pronounced lag phase and subsequent explosive growth of amyloidal aggregates. Here we show that the initial stages of this process can be well described by exponential growth of the fibrillated proteins. This indicates that the process is mainly controlled by a secondary nucleation pathway.

research product