0000000000938304

AUTHOR

Tinkle Chugh

showing 22 related works from this author

Treed Gaussian Process Regression for Solving Offline Data-Driven Continuous Multiobjective Optimization Problems

2023

Abstract For offline data-driven multiobjective optimization problems (MOPs), no new data is available during the optimization process. Approximation models (or surrogates) are first built using the provided offline data and an optimizer, e.g. a multiobjective evolutionary algorithm, can then be utilized to find Pareto optimal solutions to the problem with surrogates as objective functions. In contrast to online data-driven MOPs, these surrogates cannot be updated with new data and, hence, the approximation accuracy cannot be improved by considering new data during the optimization process. Gaussian process regression (GPR) models are widely used as surrogates because of their ability to pr…

Pareto optimalityComputational Mathematicspareto-tehokkuusgaussiset prosessitmetamodellingGaussian processeskrigingsurrogateregression treeskriging-menetelmämonitavoiteoptimointi
researchProduct

An Interactive Framework for Offline Data-Driven Multiobjective Optimization

2020

We propose a framework for solving offline data-driven multiobjective optimization problems in an interactive manner. No new data becomes available when solving offline problems. We fit surrogate models to the data to enable optimization, which introduces uncertainty. The framework incorporates preference information from a decision maker in two aspects to direct the solution process. Firstly, the decision maker can guide the optimization by providing preferences for objectives. Secondly, the framework features a novel technique for the decision maker to also express preferences related to maximum acceptable uncertainty in the solutions as preferred ranges of uncertainty. In this way, the d…

050101 languages & linguisticsDecision support systemMathematical optimizationOptimization problemdecision supportComputer scienceEvolutionary algorithmGaussian processespäätöksentukijärjestelmät02 engineering and technologyMulti-objective optimizationdecision makingData-driven0202 electrical engineering electronic engineering information engineeringmetamodelling0501 psychology and cognitive sciencessurrogateInteractive visualization05 social sciencesgaussiset prosessitmonitavoiteoptimointiMetamodelingKriging020201 artificial intelligence & image processingdecomposition-based MOEAkriging-menetelmäCognitive load
researchProduct

A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem

2017

A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives have been modeled using the operational data of the furnace using 12 process variables identified through a principal component analysis and optimized simultaneously. The capability of this algorithm to handle a large number of objectives, which has been lacking earlier, results in a more efficient setting of the operational parameters of the furnace, leading to a precisely optimized hot metal production process. peerReviewed

data-driven optimizationPareto optimalityEngineeringBlast furnaceMathematical optimizationOptimization problemmodel managementblast furnaceEvolutionary algorithm02 engineering and technologyMulti-objective optimizationIndustrial and Manufacturing Engineering020501 mining & metallurgyData-drivenironmakingoptimointi0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceta113business.industrypareto-tehokkuusMechanical EngineeringProcess (computing)metamodelingMetamodeling0205 materials engineeringmulti-objective optimizationMechanics of MaterialsPrincipal component analysis020201 artificial intelligence & image processingbusinessrautateollisuus
researchProduct

A Visualizable Test Problem Generator for Many-Objective Optimization

2022

Visualizing the search behavior of a series of points or populations in their native domain is critical in understanding biases and attractors in an optimization process. Distancebased many-objective optimization test problems have been developed to facilitate visualization of search behavior in a two-dimensional design space with arbitrarily many objective functions. Previous works have proposed a few commonly seen problem characteristics into this problem framework, such as the definition of disconnected Pareto sets and dominance resistant regions of the design space. The authors’ previous work has advanced this research further by providing a problem generator to automatically create use…

Mathematical optimizationProcess (engineering)Computer sciencevisualisointimulti-objective test problemsPareto principleevolutionary optimizationmonitavoiteoptimointiMulti-objective optimizationTheoretical Computer ScienceDomain (software engineering)Visualizationtest suiteRange (mathematics)avoin lähdekoodioptimointiComputational Theory and MathematicsTest suitebenchmarkingongelmanratkaisuvisualizationSoftwareGenerator (mathematics)IEEE Transactions on Evolutionary Computation
researchProduct

A Feature Rich Distance-Based Many-Objective Visualisable Test Problem Generator

2019

In optimiser analysis and design it is informative to visualise how a search point/population moves through the design space over time. Visualisable distance-based many-objective optimisation problems have been developed whose design space is in two-dimensions with arbitrarily many objective dimensions. Previous work has shown how disconnected Pareto sets may be formed, how problems can be projected to and from arbitrarily many design dimensions, and how dominance resistant regions of design space may be defined. Most recently, a test suite has been proposed using distances to lines rather than points. However, active use of visualisable problems has been limited. This may be because the ty…

Flexibility (engineering)Mathematical optimizationeducation.field_of_studyComputer sciencevisualisointiMulti-objective test problemsPopulationPareto principleevoluutiolaskenta0102 computer and information sciences02 engineering and technology01 natural sciencesmonitavoiteoptimointiSet (abstract data type)test suiteRange (mathematics)010201 computation theory & mathematicsevolutionary optimisation0202 electrical engineering electronic engineering information engineeringTest suite020201 artificial intelligence & image processingPoint (geometry)benchmarkingeducationGenerator (mathematics)
researchProduct

On Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization

2016

Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not received much attention. In this paper, we use a recently proposed Kriging-assisted evolutionary algorithm for many-objective optimization and investigate the effect of infeasible solutions on the performance of the surrogates. We assume that constraint functions are computationally inexpensive and consid…

Mathematical optimization021103 operations researchComputer scienceFeasible region0211 other engineering and technologiesEvolutionary algorithm02 engineering and technologyConstraint satisfactionMulti-objective optimizationConstraint (information theory)Data set0202 electrical engineering electronic engineering information engineeringBenchmark (computing)020201 artificial intelligence & image processingEvolutionary programming
researchProduct

Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies

2018

We consider multiobjective optimization problems where objective functions have different (or heterogeneous) evaluation times or latencies. This is of great relevance for (computationally) expensive multiobjective optimization as there is no reason to assume that all objective functions should take an equal amount of time to be evaluated (particularly when objectives are evaluated separately). To cope with such problems, we propose a variation of the Kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) called heterogeneous K-RVEA (short HK-RVEA). This algorithm is a merger of two main concepts designed to account for different latencies: A single-objective evolutionary a…

Pareto optimalityMathematical optimizationComputer science0211 other engineering and technologiesEvolutionary algorithm02 engineering and technologyexpensive optimizationMulti-objective optimizationEvolutionary computationSet (abstract data type)optimointi0202 electrical engineering electronic engineering information engineeringmetamodellingRelevance (information retrieval)multiobjective optimizationBayesian optimizationta113021103 operations researchpareto-tehokkuusbayesilainen menetelmäBayesian optimizationmonitavoiteoptimointimachine learningkoneoppiminenheterogeneous objectivesBenchmark (computing)020201 artificial intelligence & image processing
researchProduct

A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms

2017

Evolutionary algorithms are widely used for solving multiobjective optimization problems but are often criticized because of a large number of function evaluations needed. Approximations, especially function approximations, also referred to as surrogates or metamodels are commonly used in the literature to reduce the computation time. This paper presents a survey of 45 different recent algorithms proposed in the literature between 2008 and 2016 to handle computationally expensive multiobjective optimization problems. Several algorithms are discussed based on what kind of an approximation such as problem, function or fitness approximation they use. Most emphasis is given to function approxim…

0209 industrial biotechnologyMathematical optimizationComputer scienceComputationEvolutionary algorithmComputational intelligence02 engineering and technologyMulti-objective optimizationTheoretical Computer Science020901 industrial engineering & automation0202 electrical engineering electronic engineering information engineeringmulticriteria optimizationsurrogateresponse surface approximationcomputational costmetamodelFitness approximationpareto optimalitypareto-tehokkuusFunction (mathematics)monitavoiteoptimointiFunction approximationkoneoppiminen020201 artificial intelligence & image processingGeometry and TopologySoftware
researchProduct

Surrogate-assisted evolutionary multiobjective shape optimization of an air intake ventilation system

2017

We tackle three different challenges in solving a real-world industrial problem: formulating the optimization problem, connecting different simulation tools and dealing with computationally expensive objective functions. The problem to be optimized is an air intake ventilation system of a tractor and consists of three computationally expensive objective functions. We describe the modeling of the system and its numerical evaluation with a commercial software. To obtain solutions in few function evaluations, a recently proposed surrogate-assisted evolutionary algorithm K-RVEA is applied. The diameters of four different outlets of the ventilation system are considered as decision variables. Fr…

ta1130209 industrial biotechnologyMathematical optimizationnumerical modelsOptimization problemlineaarinen optimointiLinear programmingComputer sciencesoftwarehydraulijärjestelmätventilationEvolutionary algorithmlinear programming02 engineering and technologyFunction (mathematics)Set (abstract data type)resistance020901 industrial engineering & automationhydraulic systemsilmanvaihto0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingShape optimizationoptimization
researchProduct

Probabilistic Selection Approaches in Decomposition-based Evolutionary Algorithms for Offline Data-Driven Multiobjective Optimization

2022

In offline data-driven multiobjective optimization, no new data is available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be utilized to find solutions by using these surrogates. The accuracy of the approximated solutions depends on the surrogates and approximations typically involve uncertainties. In this paper, we propose probabilistic selection approaches that utilize the uncertainty information of the Kriging models (as surrogates) to improve the solution process in offline data-driven multiobjective optimization. These approaches are designed for decomposition-base…

Pareto optimalitypareto-tehokkuusgaussiset prosessitGaussian processesevoluutiolaskentamonitavoiteoptimointiTheoretical Computer ScienceKrigingComputational Theory and Mathematicsmetamodellingsurrogatekernel density estimationkriging-menetelmäSoftware
researchProduct

A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization

2018

We propose a surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed evolutionary algorithm for many-objective optimization that relies on a set of adaptive reference vectors for selection. The proposed surrogateassisted evolutionary algorithm uses Kriging to approximate each objective function to reduce the computational cost. In managing the Kriging models, the algorithm focuses on the balance of diversity and convergence by making use of the uncertainty information in the approximated objective values given by the Kriging models, the distr…

Pareto optimalityPareto-tehokkuus0209 industrial biotechnologyMathematical optimizationOptimization problemComputer sciencemodel managementpäätöksentekoEvolutionary algorithmInteractive evolutionary computation02 engineering and technologyEvolutionary computationTheoretical Computer Science020901 industrial engineering & automationKrigingalgoritmit0202 electrical engineering electronic engineering information engineeringvektorit (matematiikka)multiobjective optimizationcomputational costsurrogate-assisted evolutionary algorithmsBayesian optimizationta113Cultural algorithmpareto-tehokkuusbayesilainen menetelmäta111Approximation algorithmImperialist competitive algorithmmonitavoiteoptimointiKrigingkoneoppiminenComputational Theory and Mathematics020201 artificial intelligence & image processingreference vectorsSoftwareIEEE Transactions on Evolutionary Computation
researchProduct

Surrogate-Assisted Evolutionary Optimization of Large Problems

2019

This chapter presents some recent advances in surrogate-assisted evolutionary optimization of large problems. By large problems, we mean either the number of decision variables is large, or the number of objectives is large, or both. These problems pose challenges to evolutionary algorithms themselves, constructing surrogates and surrogate management. To address these challenges, we proposed two algorithms, one called kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) for many-objective optimization, and the other called cooperative swarm optimization algorithm (SA-COSO) for high-dimensional single-objective optimization. Empirical studies demonstrate that K-RVEA works…

Mathematical optimizationOptimization algorithmoptimisationComputer scienceEvolutionary algorithmSwarm behaviourevoluutiolaskenta02 engineering and technologymatemaattinen optimointimathematical optimisationDecision variablesEmpirical researchoptimointievolutionary computation0202 electrical engineering electronic engineering information engineeringReference vector020201 artificial intelligence & image processing
researchProduct

Towards Better Integration of Surrogate Models and Optimizers

2019

Surrogate-Assisted Evolutionary Algorithms (SAEAs) have been proven to be very effective in solving (synthetic and real-world) computationally expensive optimization problems with a limited number of function evaluations. The two main components of SAEAs are: the surrogate model and the evolutionary optimizer, both of which use parameters to control their respective behavior. These parameters are likely to interact closely, and hence the exploitation of any such relationships may lead to the design of an enhanced SAEA. In this chapter, as a first step, we focus on Kriging and the Efficient Global Optimization (EGO) framework. We discuss potentially profitable ways of a better integration of…

Mathematical optimizationOptimization problemoptimisationComputer sciencemedia_common.quotation_subjectTestbedEvolutionary algorithmevoluutiolaskenta02 engineering and technologyBenchmarkingmatemaattinen optimointimathematical optimisationSurrogate modeloptimointievolutionary computationKriging0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingFunction (engineering)Global optimizationmedia_common
researchProduct

Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms

2016

We study how different types of preference information coming from a human decision maker can be utilized in an interactive multiobjective evolutionary optimization algorithm (MOEA). The idea is to convert different types of preference information into a unified format which can then be utilized in an interactive MOEA to guide the search towards the most preferred solution(s). The format chosen here is a set of reference vectors which is used within the interactive version of the reference vector guided evolutionary algorithm (RVEA). The proposed interactive RVEA is then applied to the multiple-disk clutch brake design problem with five objectives to demonstrate the potential of the idea in…

Optimization problemLinear programmingComputer science0211 other engineering and technologiesEvolutionary algorithmInteractive evolutionary computationpreference information02 engineering and technologyMachine learningcomputer.software_genredecision makingEvolutionary computationSet (abstract data type)vectors0202 electrical engineering electronic engineering information engineeringta113021103 operations researchbusiness.industryta111Approximation algorithmPreferencemultiobjective evolutionary optimization algorithm020201 artificial intelligence & image processingArtificial intelligencebusinessoptimizationcomputer2016 IEEE Symposium Series on Computational Intelligence (SSCI)
researchProduct

An Interactive Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Multiobjective Optimization Problems

2015

This paper presents a new preference based interactive evolutionary algorithm (I-SIBEA) for solving multiobjective optimization problems using weighted hypervolume. Here the decision maker iteratively provides her/his preference information in the form of identifying preferred and/or non-preferred solutions from a set of nondominated solutions. This preference information provided by the decision maker is used to assign weights of the weighted hypervolume calculation to solutions in subsequent generations. In any generation, the weighted hypervolume is calculated and solutions are selected to the next generation based on their contribution to the weighted hypervolume. The algorithm is compa…

Flexibility (engineering)Set (abstract data type)Mathematical optimizationComputer scienceBenchmark (computing)Evolutionary algorithmmultiobjective optimizationInteractive evolutionary computationevolutionary algorithmsinteractive methodsMulti-objective optimizationEvolutionary programmingPreference
researchProduct

A Multiple Surrogate Assisted Decomposition-Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization

2019

Many-objective optimization problems (MaOPs) contain four or more conflicting objectives to be optimized. A number of efficient decomposition-based evolutionary algorithms have been developed in the recent years to solve them. However, computationally expensive MaOPs have been scarcely investigated. Typically, surrogate-assisted methods have been used in the literature to tackle computationally expensive problems, but such studies have largely focused on problems with 1–3 objectives. In this paper, we present an approach called hybrid surrogate-assisted many-objective evolutionary algorithm to solve computationally expensive MaOPs. The key features of the approach include: 1) the use of mul…

Mathematical optimizationOptimization problemComputer scienceEvolutionary algorithmPareto principle02 engineering and technologyEvolutionary computationTheoretical Computer ScienceConstraint (information theory)Set (abstract data type)Range (mathematics)Computational Theory and Mathematics0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingHeuristicsSoftwareIEEE Transactions on Evolutionary Computation
researchProduct

On Dealing with Uncertainties from Kriging Models in Offline Data-Driven Evolutionary Multiobjective Optimization

2019

Many works on surrogate-assisted evolutionary multiobjective optimization have been devoted to problems where function evaluations are time-consuming (e.g., based on simulations). In many real-life optimization problems, mathematical or simulation models are not always available and, instead, we only have data from experiments, measurements or sensors. In such cases, optimization is to be performed on surrogate models built on the data available. The main challenge there is to fit an accurate surrogate model and to obtain meaningful solutions. We apply Kriging as a surrogate model and utilize corresponding uncertainty information in different ways during the optimization process. We discuss…

Pareto optimalitymallintaminenMathematical optimizationOptimization problemComputer scienceetamodelling02 engineering and technologyMulti-objective optimizationTheoretical Computer ScienceData-drivensymbols.namesakeSurrogate modelMetamodellingKriging020204 information systemsMachine learning0202 electrical engineering electronic engineering information engineeringsurrogateGaussian process/dk/atira/pure/subjectarea/asjc/1700Gaussian processpareto-tehokkuusmonitavoiteoptimointikoneoppiminensymbolsBenchmark (computing)/dk/atira/pure/subjectarea/asjc/2600/2614020201 artificial intelligence & image processingnormaalijakaumaComputer Science(all)
researchProduct

Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm

2019

We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. We are motivated by practical applicability and focus on two main challenges faced by practitioners in industry: 1) meaningful formulation of the optimization problem reflecting the needs of a decision maker and 2) finding a desirable solution based on a decision maker’s preferences when solving a problem with computationally expensive function evaluations. For the first challenge, we describe the procedure of modelling a component in the air intake ventilation system wi…

Pareto optimalitymallintaminenMathematical optimizationOptimization problemProcess (engineering)Computer sciencemedia_common.quotation_subjectmultiple criteria decision makingEvolutionary algorithmoptimal shape designpreference information0102 computer and information sciences02 engineering and technology01 natural sciencesComponent (UML)0202 electrical engineering electronic engineering information engineeringBaseline (configuration management)Function (engineering)Preference (economics)media_commonpareto-tehokkuusilmanvaihtojärjestelmätmetamodelsmonitavoiteoptimointikoneoppiminen010201 computation theory & mathematicsevolutionary multi-objective optimizationcomputational costs020201 artificial intelligence & image processingmuotoProceedings of the Genetic and Evolutionary Computation Conference
researchProduct

Data-Driven Evolutionary Optimization: An Overview and Case Studies

2019

Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist, instead computationally expensive numerical simulations or costly physical experiments must be performed for fitness evaluations. In more extreme cases, only historical data are available for performing optimization and no new data can be generated during optimization. Solving evolutionary optimization problems driven by data collected in simulations, physical experiments, production processes, or daily life are termed data-driven evolutionary optimization. In this…

data-driven optimizationMathematical optimizationOptimization problemmodel managementevoluutiolaskenta02 engineering and technologymatemaattinen optimointiEvolutionary computationTheoretical Computer ScienceData modelingData-drivenModel managementkoneoppiminenComputational Theory and MathematicsdatatiedeoptimointiTaxonomy (general)Constraint functionsalgoritmit0202 electrical engineering electronic engineering information engineeringProduction (economics)020201 artificial intelligence & image processingsurrogateevolutionary algorithmsSoftware
researchProduct

On Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization

2016

Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not received much attention. In this paper, we use a recently proposed Kriging-assisted evolutionary algorithm for many-objective optimization and investigate the effect of infeasible solutions on the performance of the surrogates. We assume that constraint functions are computationally inexpensive and consid…

evolution controlmetamodelpäätöksentekomultiobjective optimizationcomputational cost
researchProduct

A Multiple Surrogate Assisted Decomposition Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization

2019

Many-objective optimization problems (MaOPs) contain four or more conflicting objectives to be optimized. A number of efficient decomposition-based evolutionary algorithms have been developed in the recent years to solve them. However, computationally expensive MaOPs have been scarcely investigated. Typically, surrogate-assisted methods have been used in the literature to tackle computationally expensive problems, but such studies have largely focused on problems with 1–3 objectives. In this paper, we present an approach called hybrid surrogate-assisted many-objective evolutionary algorithm to solve computationally expensive MaOPs. The key features of the approach include: 1) the use of mul…

metamodelsmultiprotocol label switchingmultiobjective optimizationevoluutiolaskentareference vectorscomputational costmonitavoiteoptimointi
researchProduct

Handling expensive multiobjective optimization problems with evolutionary algorithms

2017

Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations or costly experiments), which pose an extra challenge in solving them. In this thesis, we first present a survey of different methods proposed in the literature to handle MOPs with expensive evaluations. We observed that most of the existing methods cannot be easily applied to problems with more than three objectives. Therefore, we propose a Kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) for problems with at least three expensive objectives. The alg…

Pareto optimalitymany-objective optimizationoptimointipareto-tehokkuusalgoritmitmetamodellingsurrogateevoluutiolaskentamatemaattinen optimointimonitavoiteoptimointicomputational costdecision making
researchProduct