0000000000942595

AUTHOR

Irene Serra

0000-0003-1565-6355

showing 2 related works from this author

Nrg1 haploinsufficiency alters inhibitory cortical circuits

2021

Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral d…

Cortical neuronsReceptor ErbB-4Neuregulin-1Gene ExpressionneuronsNeurosciences. Biological psychiatry. NeuropsychiatryHaploinsufficiencyBiologyInhibitory postsynaptic potentialHippocampusMagnetic&nbspMiceInterneuronsNeuregulin 3mental disordersMagnetic resonance spectroscopyAnimalsRNA MessengerneurotransmissionNeuregulin 1GABAergic Neuronsgamma-Aminobutyric AcidInhibitory&nbspCerebral CortexNrg1resonance spectroscopyNeural InhibitionMagnetic Resonance ImagingCortex (botany)Inhibitory neurotransmissionParvalbuminsNeurologyInhibitory Postsynaptic PotentialsCalbindin 2Vesicular Glutamate Transport Protein 1biology.proteinExcitatory postsynaptic potentialSchizophreniaCalretininHaploinsufficiencyCortical&nbspNeuroscienceParvalbuminRC321-571Neurobiology of Disease
researchProduct

A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction

2019

Food addiction is linked to obesity and eating disorders and is characterized by a loss of behavioral control and compulsive food intake. Here, using a food addiction mouse model, we report that the lack of cannabinoid type-1 receptor in dorsal telencephalic glutamatergic neurons prevents the development of food addiction-like behavior, which is associated with enhanced synaptic excitatory transmission in the medial prefrontal cortex (mPFC) and in the nucleus accumbens (NAc). In contrast, chemogenetic inhibition of neuronal activity in the mPFC-NAc pathway induces compulsive food seeking. Transcriptomic analysis and genetic manipulation identified that increased dopamine D2 receptor express…

0301 basic medicineFood addictionSciencemedicine.medical_treatmentPrefrontal CortexAddictionGeneral Physics and AstronomyNucleus accumbensNeurotransmissionBiologySynaptic TransmissionNucleus AccumbensArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesGlutamatergic0302 clinical medicineReceptor Cannabinoid CB1Dopamine receptor D2Behavioural genetics ; AddictionNeural Pathwaysmental disordersmedicineAnimalsPremovement neuronal activitylcsh:SciencePrefrontal cortexMice KnockoutMultidisciplinaryReceptors Dopamine D2Gene Expression ProfilingQdigestive oral and skin physiologyFeeding BehaviorGeneral ChemistryUp-RegulationDisease Models Animal030104 developmental biologyGene Expression RegulationBehavioural geneticslcsh:QFood AddictionCannabinoidNeuroscience030217 neurology & neurosurgery
researchProduct