0000000000952443
AUTHOR
Caterina Lo Presti
Biocompatible nanostructured hydrogels incorporating polyaniline nanoparticles
Physico-chemical and mechanical characterization of in-situ forming xyloglucan gels incorporating a growth factor to promote cartilage reconstruction
Abstract The development of growth factors is very promising in the field of tissue regeneration but specifically designed formulations have to be developed in order to enable such new biological entities (NBEs). In particular, the range of therapeutic concentrations is usually very low compared to other active proteins and the confinement in the target site can be of crucial importance. In-situ forming scaffolds are very promising solutions for minimally invasive intervention in cartilage reconstruction and targeting of NBEs. In this work injectable, in-situ forming gels of a temperature responsive partially degalactosylated xyloglucan (Deg-XG) incorporating the growth factor FGF-18 are fo…
Smart hydrogels for novel optical functions
Nanocomposites of inherently conductive polyaniline (PANT) within a highly hydrophilic polyvinyl alcohol (PVA) based hydrogel have been produced by coupling a conventional dispersion chemical oxidative polymerization to a subsequent high energy irradiation step, in order to convert the polymer stabilizing the aqueous dispersion, namely the PVA, into a highly water swollen hydrogel incorporating the PANT particles. The incorporation of the electroactive and "pH-sensitive" polymer into a transparent and highly permeable hydrogel matrix has been pursued as a route to the development of a novel class of potentially biocompatible, smart hydrogels that can respond to changes of the surrounding en…
Effects of confinement on insulin amyloid fibrils formation.
Insulin, a 51-residue protein universally used in diabetes treatment, is known to produce amyloid fibrils at high temperature and acidic conditions. As for other amyloidogenic proteins, the mechanisms leading to nucleation and growth of insulin fibrils are still poorly understood. We here report a study of the fibrillation process for insulin confined in a suitable polymeric hydrogel, with the aim of ascertain the effects of a reduced protein mobility on the various phases of the process. The results indicate that, with respect to standard aqueous solutions, the fibrillation process is considerably slowed down at moderately high concentrations and entirely suppressed at low concentration. M…