0000000000956816
AUTHOR
W. Kurcewicz
The new neutron-rich isotope183Lu
The new neutron-rich isotope183Lu was produced in multinucleon transfer reactions by irradiatingnatW/Ta targets with 11.7 MeV/u136Xe ions, and identified by mass separation and decay spectroscopy. The measured half-life of183Lu is 58±4 s. The properties of the excited states of183Hf are discussed.
Beta-decay measurements of neutron-rich thallium, lead, and bismuth by means of resonant laser ionisation
Abstract Neutron-rich thallium, lead, and bismuth isotopes were investigated at the ISOLDE facility. After mass separation and resonant laser ionisation of the produced activity, new spectroscopic data were obtained for 215,218 Bi and 215 Pb. An attempt to reach heavy thallium had to be abandoned because of a strong francium component in the beam that gave rise to a neutron background through (α,n) reactions on the aluminium walls of the experimental chamber.
On the nuclear structure of 229Ra
14 pages, 3 tables, 6 figures.
The nuclear structure of 229Th
Abstract The γ -rays following the β − decay of 229 Ac have been investigated by means of γ -ray singles and γγ -coincidence measurements using Ge detectors. Multipolarities of 40 transitions in 229 Th have been established by measuring conversion electrons with a mini-orange electron spectrometer. The half-lives of the 146.35, 164.53 and 261.96 keV levels have been measured using the advanced time delayed βγγ (t) method. The low-lying states in 229 Th and observed transition rates have been interpreted within the quasiparticle–phonon model with inclusion of Coriolis coupling. Two octupole correlated parity partner bands, with K π =5/2 ± and K π =3/2 ± , were identified in 229 Th.
Precise energies of gamma rays from the 230Th and 228Th decay
Abstract Energies up to 300 keV of prominent gamma rays from the decay of 230 Th, 228 Th and some of the 228 Th descendants have been precisely measured by use of Ge(Li) detectors.
The new neutron-rich isotope228Rn
2 pages, 1 table, 2 figures.-- PACS nrs.: 23.90.+w; 27.90.+b.-- Section: Short Notes.
New lifetime measurements inPd109and the onset of deformation atN=60
Several new subnanosecond lifetimes were measured in Pd-109 using the fast-timing beta gamma gamma (t) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyvaskyla Ion Guide Isotope Separator On-Line (IGISOL) facility. Lifetimes were obtained for excited states in Pd-109 populated following beta decay of Rh-109. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2(+) states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. The available nuclear data indicate a s…
New insights into triaxiality and shape coexistence from odd-mass $^{109}$Rh
International audience; Rapid shape evolutions near A=100 are now the focus of much attention in nuclear science. Much of the recent work has been centered on isotopes with Z≤40, where the shapes are observed to transition between near-spherical to highly deformed with only a single pair of neutrons added. At higher Z, the shape transitions become more gradual as triaxiality sets in, yet the coexistence of varying shapes continues to play an important role in the low-energy nuclear structure, particularly in the odd-Z isotopes. This work aims to characterize competing shapes in the triaxial region between Zr and Sn isotopes using ultrafast timing techniques to measure lifetimes of excited s…
Investigation of a gas catcher/ion guide system at the Warsaw cyclotron
NESTER ACC; The properties of a gas-catcher/ion guide system, connected to a mass separator at the Heavy Ion Laboratory of Warsaw University, were investigated by using the α-decay recoil products 219Rn and 215Po, obtained from a 223Ra source. The “plasma effect” was studied by using a 14N beam with intensities ranging from 7 to 64 particledot operatornA, which correspond to power depositions between 1.6 dot operator 1016 and 7.2 dot operator 1017 eV/s for helium pressures of 75 and 380 hPa, respectively.
Nuclear structure of (231)Ac
The low-energy structure of 231Ac has been investigated by means of gamma ray spectroscopy following the beta-decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a mini-orange electron spectrometer. The decay scheme of 231Ra --> 231Ac has been constructed for the first time. The Advanced Time Delayed beta-gamma-gamma(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus. The low-energy structure of 231 Ac has been investigated by means of γ ray spectroscopy following the β − decay of…
The nuclear structure of $^{223}$Fr
Abstract The γ-rays following the β− decay of 223Rn have been investigated by means of γ-ray singles including multispectrum analysis, and γγ-coincidence measurements using Ge detectors. Multipolarities of 38 transitions in 223Fr have been established by measuring conversion electrons with a mini-orange electron spectrometer. Most of the observed transitions could be placed in a level scheme comprising 53 excited states of 223Fr. The level structure is interpreted in terms of K π = 3 2 ± and 1 2 ± parity doublet bands, and a second K π = 3 2 ± higher-lying parity doublet. The experimental data are compared with the theoretical predictions of the reflection-asymmetric rotor model.
New insights into triaxiality and shape coexistence from odd-mass Rh109
Rapid shape evolutions near A = 100 are now the focus of much attention in nuclear science. Much of the recent work has been centered on isotopes with Z <= 40, where the shapes are observed to transition between near-spherical to highly deformed with only a single pair of neutrons added. At higher Z, the shape transitions become more gradual as triaxiality sets in, yet the coexistence of varying shapes continues to play an important role in the low-energy nuclear structure, particularly in the odd-Z isotopes. This work aims to characterize competing shapes in the triaxial region between Zr and Sn isotopes using ultrafast timing techniques to measure lifetimes of excited states in the neutro…
Single-Neutron States inS133n
The location of several single-neutron states in ${}^{133}\mathrm{Sn}$ has been identified. The ${p}_{3/2}$, ${h}_{9/2}$, and ${f}_{5/2}$ states were found at 853.7, 1560.9, and 2004.6 keV, respectively, by measuring $\ensuremath{\gamma}$ rays in coincidence with delayed neutrons following the decay of ${}^{134}\mathrm{In}$. Crucial for obtaining the new data were the improved yields at the mass-separator facility ISOLDE-PSB at CERN. A semiempirically adjusted Woods-Saxon calculation, based on parameters from the Pb region and normalized on the mass data at ${}^{132}\mathrm{Sn}$, reproduces the new single particle energies with good precision.
β−decay of the neutron-rich isotope215Pb
This Brief Report reports on the first observation of the β--delayed γ decay of 215Pb, feeding states in 215Bi. The 215Pb beam was produced using resonant laser ionization and mass separated at the ISOLDE-CERN on-line mass separator. This ensured clean identification of the γ rays as belonging to the decay of 215Pb or its β-decay daughters. A half-life of 147(12) s was measured for the 215Pb β decay and a level scheme for the daughter nucleus 215Bi is proposed, resulting in an extended systematics of the excited states of the neutron-rich Bi isotopes.
Search for stable octupole deformation in $^{225}$Fr
Levels in $^{225}$Fr have been studied by $\gamma$-ray and conversion-electron spectroscopy following the $\beta$-decay of $^{225}$Rn, and by the $^{226}$Ra(t,$\alpha$)$^{225}$Fr single-proton-pickup reaction. Multipolarities were obtained for $\sim$ 50 $\gamma$-transitions, and a level scheme was established in which definite spin-parity values were determined for over 20 of the 48 levels. Although low-lying rotational bands of both parities exist for $K=1/2$ and $K=3/2$, there is no experimental evidence to claim these are parity doublets. E1 strengths connecting the $K^\pi=3/2^\pm$ bands are intermediate between those for nuclides which are reflection symmetric and those claimed to be oc…
New lifetime measurements in 109 Pd and the onset of deformation at N = 60
Several new subnanosecond lifetimes were measured in 109Pd using the fast-timing βγγ (t) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyvaskyl ¨ a Ion Guide Isotope Separator On-Line (IGISOL) facility. Lifetimes were obtained for excited states ¨ in 109Pd populated following β decay of 109Rh. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2+ states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. The available nuclear data indicate a sudden increase i…
Hafnium and Lutetium Isomers Produced in Heavy-lon Collisions of 7.6 MeV/u 40Ar, 8.5 MeV/u 84 Kr and 8.5 MeV/u 136Xe on natW Targets
First observation of beta-delayed deuteron emission
5 pages, 2 figures.
High-sensitivity study of levels in 30Al following β decay of 30Mg
γ -ray and fast-timing spectroscopy were used to study levels in 30Al populated following the β− decay of 30Mg. Five new transitions and three new levels were located in 30Al. A search was made to identify the third 1+ state expected at an excitation energy of ∼2.5 MeV. Two new levels were found, at 3163.9 and 3362.5 keV, that are firm candidates for this state. Using the advanced time-delayed (ATD) βγγ (t) method we have measured the lifetime of the 243.8-keV state to be T1/2 = 15(4) ps, which implies that the 243.8-keV transition is mainly of M1 character. Its fast B(M1; 2+ → 3+) value of 0.10(3) W.u. is in very good agreement with the USD shell-model prediction of 0.090 W.u. The 1801.5-k…
New neutron-rich isotopes of astatine and bismuth
Neutron-rich isotopes of astatine have been produced through spallation reactions with 600 MeV protons on a232Th target and identified by spectroscopic techniques combined with one-line mass separation at the ISOLDE facility. The half-lives of218At and219At have been remeasured to be 1.5(3) s and 57(4) s, respectively. Four new isotopes of astatine,220−223At, have been observed for the first time, and their half-lives were found to be 3.73(13) min, 2.3(2) min, 54(10) s, and 50(7) s, respectively. Another nuclide,216Bi, has been observed for the first time as the daughter product of the220At alpha decay, and its half-life has been measured to be 6.6(21) min.
First observation of the β-decay of neutron-rich 215Pb and 218Bi by the pulsed-release technique and resonant laser ionisation
The neutron-rich Tl, Pb and Bi isotopes are of exceptional interest to trace the evolution of single-particle levels away from the doubly magic 208Pb towards the neutron-rich side of the nuclear chart. While 208Pb is well understood in terms of the shell model, experimental data on the heavier isotopes is very scarce and it is far from clear to what extent the shell model is upheld [1]. Furthermore, large branchings ratios for β-delayed neutron emission are expected in this mass region, adding astrophysical interest to the subject [2].
Quadrupole deformed and octupole collective bands in 228Ra
Spins and parities for collective states in $^{228}$Ra have been determined from conversion electron measurements with a mini-orange $\beta$-spectrometer. The fast-timing $\beta\gamma\gamma(t)$ method has been used to measure lifetimes of T$_{1/2}$=550(20) ps and 181(3) ps for the $2^{+}_{1}$ and $4^{+}_{1}$ members of the K=0$^{+}$ band, and T$_{1/2} \leqslant$ 7 ps and $\leqslant$ 6 ps for the $1^{-}_{1}$ and $3^{-}_1$ members of the K = $0^{-}$ band, respectively The quadrupole moments, $Q_{0}$ deduced from the B (E2; 2$_{1}^{+} \rightarrow 0_{1}^{+}$) and B (E2; 4$_{1}^{+} \rightarrow 2_1^{+}$) rates are in good agreement with the previously measured value and the systematics of the reg…
The new neutron-rich nuclei231Fr and231Ra
The new neutron-rich isotope231Fr has been produced in a spallation reaction of238U induced by 600 MeV protons and identified by mass-separation and decay spectroscopy. In addition, the so far unknown231Ra and the known231Ac have been observed as daughter products. The Z-assignments were performed via the decay of KX-rays, and genetic relationships. Half-lives of 17.5(8) s and 103(3) s were obtained for231Fr and231Ra, respectively.