0000000000957982

AUTHOR

Robert M. Reeve

showing 29 related works from this author

Importance of spin current generation and detection by spin injection and the spin Hall effect for lateral spin valve performance.

2018

Lateral spin valves are attractive device geometries where functional spin currents can be generated and detected by various mechanisms, such as spin injection and the direct and the inverse spin Hall effect. To understand the mechanisms behind these effects better, as well as their potential for application in devices, we combine multiple mechanisms in multi-terminal Pt-Py-Cu lateral spin valves: we generate pure spin currents in the copper spin conduit both via the spin Hall effect in platinum and electric spin injection from permalloy and detect signals both via conventional non-local detection and via the inverse spin Hall effect in the same device at variable temperatures. Differences …

PermalloyMaterials scienceCondensed matter physics530 PhysicsSpin valve02 engineering and technologySpin current530 Physik021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0103 physical sciencesSpin Hall effectCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceCurrent (fluid)010306 general physics0210 nano-technologySpin injectionSpin-½Journal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Determination of fine magnetic structure of magnetic multilayer with quasi antiferromagnetic layer by using polarized neutron reflectivity analysis

2020

We carried out polarized neutron reflectivity (PNR) analysis to determine the fine magnetic structure of magnetic multilayers with quasi-antiferromagnetic (quasi-AFM) layers realized by 90-deg coupling using two Co90Fe10 layers, and quantitatively evaluated the magnetization of quasi-AFM layers. Two types of samples with different buffer layers, Ru buffer and a NiFeCr buffer, were investigated and the average angles between the respective magnetization of the two Co90Fe10 layers were estimated to be +/− 39 degrees and +/− 53 degrees. In addition, less roughness was found in the NiFeCr buffer sample resulting stronger 90-deg coupling. A perfect quasi-AFM is expected to be realized by a flat …

010302 applied physicsCouplingMaterials scienceCondensed matter physicsMagnetic structure530 PhysicsGeneral Physics and Astronomy02 engineering and technologySurface finish021001 nanoscience & nanotechnology530 Physik01 natural scienceslcsh:QC1-999Buffer (optical fiber)Magnetization0103 physical sciencesAntiferromagnetismNeutron0210 nano-technologyLayer (electronics)lcsh:Physics
researchProduct

Imaging Spin Dynamics on the Nanoscale Using X-Ray Microscopy

2015

The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls and bubbles are studied by scanning transmission X-ray microscopy (STXM), combining magnetic (XMCD) contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz) rotating magnetic fiel…

coupled modesdomain wallsPhysicsCondensed Matter::Superconductivityvortex core reversalspin-transfer-torqueX-ray microscopyddc:530vortex dynamicsspin wavesnano wires
researchProduct

Direct observation of spin diffusion enhanced nonadiabatic spin torque effects in rare-earth-doped permalloy

2018

The relation between the nonadiabaticity parameter $\ensuremath{\beta}$ and the damping parameter $\ensuremath{\alpha}$ is investigated in permalloy-based microdisks. In order to determine $\ensuremath{\beta}$, high-resolution imaging of the current-induced vortex-core displacement is performed using scanning electron microscopy with polarization analysis. The materials properties of the films are varied via rare-earth Dy doping, leading to a greatly enhanced damping, while retaining the same spin configuration for the confined vortex state. A clear trend to much higher nonadiabaticity values is seen for the higher doping levels and an averaged value of $\ensuremath{\beta}=(0.29\ifmmode\pm\…

PermalloyPhysicsAngular momentumCondensed matter physicsRare earthDoping02 engineering and technology021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesVortex state0103 physical sciencesSpin diffusion010306 general physics0210 nano-technologyScalingPhysical Review B
researchProduct

Scaling of intrinsic domain wall magneto-resistance with confinement in electromigrated nanocontacts

2018

In this work we study the evolution of intrinsic domain wall magnetoresistance (DWMR) with domain wall confinement. Clean permalloy notched half-ring nanocontacts are fabricated using a special ultra-high vacuum electromigration procedure to tailor the size of the wire in-situ and through the resulting domain wall confinement we tailor the domain wall width from a few tens of nm down to a few nm. Through measurements of the dependence of the resistance with respect to the applied field direction we extract the contribution of a single domain wall to the MR of the device, as a function of the domain wall width in the confining potential at the notch. In this size range, an intrinsic positive…

PermalloyMaterials scienceMagnetoresistanceField (physics)Condensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectromigrationDomain wall (magnetism)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesSingle domain010306 general physics0210 nano-technologyAnisotropyScaling
researchProduct

Revealing the importance of interfaces for pure spin current transport

2021

Spin transport phenomena underpin an extensive range of spintronic effects. In particular spin transport across interfaces occurs in most device concepts, but is so far poorly understood. As interface properties strongly impact spin transport, one needs to characterize and correlate them to the fabrication method. Here we investigate pure spin current transport across interfaces and connect this with imaging of the interfaces. We study the detection of pure spin currents via the inverse spin Hall effect in Pt and the related spin current absorption by Pt in Py-Cu-Pt lateral spin valves. Depending on the fabrication process, we either find a large (inverse) spin Hall effect signal and low sp…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale Physics530 PhysicsMeasure (physics)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesDirect imagingSpin current530 PhysikCharacterization (materials science)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated ElectronsAbsorption (electromagnetic radiation)Spin-½
researchProduct

Spin relaxation in Cu and Al spin conduits

2014

We study the spin relaxation in Al and Cu spin conduits embedded in non-local spin valve nanostructures. Measuring the key spin transport properties, we determine the spin and charge diffusion constants as well as the spin flip time. By varying the temperature, we find that the maximum of the non-local spin resistance change occurs at finite temperatures with a clear difference between Al and Cu. In particular, we find that the maximum of the non-local spin signal in Al is less pronounced and occurs at lower temperatures compared to Cu suggesting that the self-passivating Al surface plays a role. Having fabricated devices with both materials in identical processes, we can attribute the diff…

Spin polarizationCondensed matter physicsChemistrySpin valveSurfaces and InterfacesZero field splittingCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSpin iceSpin waveMaterials ChemistryCondensed Matter::Strongly Correlated ElectronsSpin-flipElectrical and Electronic EngineeringQuantum spin liquidSpin-½physica status solidi (a)
researchProduct

Direct Imaging of Chiral Domain Walls and Néel‐Type Skyrmionium in Ferrimagnetic Alloys

2021

International audience; The evolution of chiral spin structures is studied in ferrimagnet Ta/Ir/Fe/GdFeCo/Pt multilayers as a function of temperature using scanning electron microscopy with polarization analysis (SEMPA). The GdFeCo ferrimagnet exhibits pure right-hand Néel-type domain wall (DW) spin textures over a large temperature range. This indicates the presence of a negative Dzyaloshinskii-Moriya interaction (DMI) that can originate from both the top Fe/Pt and the Co/Pt interfaces. From measurements of the DW width, as well as complementary magnetic characterization, the exchange stiffness as a function of temperature is ascertained. The exchange stiffness is surprisingly mostly const…

Materials scienceSpintronicsCondensed matter physics530 PhysicsSkyrmionDirect imaging02 engineering and technologyType (model theory)021001 nanoscience & nanotechnologyCondensed Matter Physics530 Physik01 natural sciences[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Electronic Optical and Magnetic MaterialsDomain (software engineering)BiomaterialsFerrimagnetism0103 physical sciencesElectrochemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chirals ; Neel domain walls ; skyrmioniums ; skyrmions spintronics010306 general physics0210 nano-technologyAdvanced Functional Materials
researchProduct

Geometrical control of pure spin current induced domain wall depinning.

2017

[EN] We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this …

Pure spin currentField (physics)Magnetic domainGeometrical constrictions in nanostructuresSpin valve02 engineering and technology01 natural sciencesMagnetization0103 physical sciencesComputational physicsGeneral Materials Science[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsComputingMilieux_MISCELLANEOUSSpin-½PhysicsCondensed matter physicsMagnetismSpin-transfer torque021001 nanoscience & nanotechnologyCondensed Matter PhysicsDomain wall motionDomain wall (magnetism)Spin Hall effect0210 nano-technologyJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings

2017

A ring-shaped magnetic logic device offers two vortex states (clockwise and counterclockwise) to encode bits, with relative stability against external magnetic fields. The dynamics of magnetization switching in such structures, though, still need unraveling. The authors present direct experimental visualization of reproducible, robust switching in magnetic rings via domain-wall automotion, which does not require an applied field. Simulations reveal that annihilation of domain walls through automotion always occurs, with the detailed topology of the walls only influencing the dynamics locally, in line with the experimental results.

010302 applied physicsPhysicsField (physics)Condensed matter physicsMagnetic logicGeneral Physics and AstronomyLarge scale facilities for research with photons neutrons and ions01 natural sciencesVortexMagnetic fieldMagnetizationDomain wall (magnetism)Ferromagnetism0103 physical sciences010306 general physicsTopology (chemistry)Physical Review Applied
researchProduct

Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure.

2015

AbstractThe electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

MultidisciplinaryExchange biasMaterials scienceFerromagnetismCondensed matter physicsStrain (chemistry)Electric fieldMultiferroicsHeterojunctionSubstrate (electronics)BioinformaticsArticleMagnetic fieldScientific reports
researchProduct

Quasi-antiferromagnetic multilayer stacks with 90 degree coupling mediated by thin Fe oxide spacers

2019

We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90° magnetic coupling through an Fe-O layer. We investigated the magnetic properties and the relationship between the magnetic domain size and the 90° magnetic coupling via experiments and calculations. Two types of samples with a Ru buffer and a (Ni80Fe20)Cr40 buffer were prepared, and we found that with the NiFeCr buffer, the sample has a flatter Fe-O layer, leading to stronger 90° magnetic coupling and a smaller domain size compared with the Ru buffer sample. This trend is well explained by the bilinear and biquadratic coupling coefficients, A12 and B12, in L…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainAtomic force microscopy530 PhysicsOxideGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology530 Physik01 natural sciencesInductive couplingBuffer (optical fiber)Magnetizationchemistry.chemical_compoundchemistry0103 physical sciencesAntiferromagnetism0210 nano-technologyAntiparallel (electronics)
researchProduct

Thin Film Skyrmionics

2022

In condensed matter physics, magnetic skyrmions, topologically stabilized magnetic solitons, have been discovered in various materials systems, which has intrigued the community in terms of not only fundamental physics but also with respect to engineering applications. In particular, skyrmions in thin films are easily manipulable by electrical means even at room temperature. Concomitantly, a variety of possible applications have been proposed and proof-of-concept devices have been demonstrated. Recently, the field of skyrmion-based electronics has been referred to as skyrmionics and this field has been rapidly growing and extended in multiple directions. This review provides recent progres…

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsSkyrmionGeneral Materials ScienceThin filmCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAnnual Review of Condensed Matter Physics
researchProduct

Current induced chiral domain wall motion in CuIr/CoFeB/MgO thin films with strong higher order spin–orbit torques

2020

We investigate the Dzyaloshinskii–Moriya interaction (DMI) and spin–orbit torque effects in CuIr/CoFeB/MgO heterostructures. To this end, harmonic Hall measurements and current induced domain wall motion experiments are performed. The motion of domain walls at zero applied field due to current demonstrates the presence of DMI in this system. We determine the strength of the DMI to be D = + 5 ± 3 μ J / m 2 and deduce right-handed chirality in domain walls showing a partial Neel type spin structure. To ascertain the torques, we perform a second harmonic measurement to quantify the damping- and field-like current induced effective fields as a function of the magnetization direction. From the a…

010302 applied physicsPhysicsPhysics and Astronomy (miscellaneous)Condensed matter physicsSpinsField (physics)02 engineering and technologySpin structure021001 nanoscience & nanotechnology01 natural sciencesMagnetizationDomain wall (magnetism)0103 physical sciencesDomain (ring theory)HarmonicCondensed Matter::Strongly Correlated Electrons0210 nano-technologySpin-½Applied Physics Letters
researchProduct

Magnetic domain structure of La0.7Sr0.3MnO 3 thin-films probed at variable temperature with scanning electron microscopy with polarization analysis

2013

The domain configuration of 50 nm thick La0.7Sr0.3MnO3 films has been directly investigated using scanning electron microscopy with polarization analysis (SEMPA), with magnetic contrast obtained without the requirement for prior surface preparation. The large scale domain structure reflects a primarily four-fold anisotropy, with a small uniaxial component, consistent with magneto-optic Kerr effect measurements. We also determine the domain transition profile and find it to be in agreement with previous estimates of the domain wall width in this material. The temperature dependence of the image contrast is investigated and compared to superconducting-quantum interference device magnetometry …

010302 applied physicsCondensed Matter - Materials ScienceKerr effectMaterials sciencePhysics and Astronomy (miscellaneous)Spin polarizationMagnetic domainCondensed matter physics530 PhysicsScanning electron microscopeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology530 Physik021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesMagnetizationMagnetic anisotropy0103 physical sciences0210 nano-technologyAnisotropyApplied Physics Letters
researchProduct

Development of a scanning electron microscopy with polarization analysis system for magnetic imaging with ns time resolution and phase-sensitive dete…

2018

Scanning electron microscopy with polarization analysis is a powerful lab-based magnetic imaging technique offering simultaneous imaging of multiple magnetization components and a very high spatial resolution. However, one drawback of the technique is the long required acquisition time resulting from the low inherent efficiency of spin detection, which has limited the applicability of the technique to certain quasi-static measurement schemes and materials with high magnetic contrast. Here we demonstrate the ability to improve the signal-to-noise ratio for particular classes of measurements involving periodic excitation of the magnetic structure via the implementation of a digital phase-sens…

Materials scienceMagnetic structurebusiness.industryScanning electron microscopePhase sensitiveDynamic imagingTime resolution02 engineering and technology021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesMagnetizationOpticsMagnetic imaging0103 physical sciences010306 general physics0210 nano-technologybusinessInstrumentationThe Review of scientific instruments
researchProduct

Control of the Magnetic Configuration of Ferromagnetic Nanostructures Across the Structural Phase Transition of Vanadium Dioxide

2016

We investigate the effect of the structural phase transition in VO 2 in magnetoelastically coupled heterostructures of VO 2 and Ni. Continuous and nano-patterned Ni layers were used, and we found reversible and reproducible magnetic domain switching induced by the VO 2 structural phase transition. The magnetic states of the nano-patterned ferromagnetic elements were dominated by topographic features which generated strong pinning but still allowed for a reversible switching between the states. Our measurements constitute a key step for the use of the VO 2 phase transition for ultrafast dynamical studies of the inverse mangetostrictive effect, and eventually employing the effect for ultrafas…

Phase transitionMaterials scienceNanostructureCondensed matter physicsMagnetic domainHeterojunction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic shape-memory alloyFerromagnetism0103 physical sciences010306 general physics0210 nano-technologySaturation (magnetic)Ultrashort pulseIEEE Magnetics Letters
researchProduct

Perspective: Magnetic skyrmions—Overview of recent progress in an active research field

2018

Within a decade, the field of magnetic skyrmionics has developed from a niche prediction to a huge and active research field. Not only do magnetic skyrmions—magnetic whirls with a unique topology—reveal fundamentally new physics, but they have also risen to prominence as up-and-coming candidates for next-generation high-density efficient information encoding. Within a few years, it has been possible to efficiently create, manipulate, and destroy nanometer-size skyrmions in device-compatible materials at room-temperature by all electrical means. Despite the incredibly rapid progress, several challenges still remain to obtain fully functional and competitive skyrmion devices, as discussed in …

Computer scienceSkyrmion0103 physical sciencesPerspective (graphical)General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology010306 general physics0210 nano-technology01 natural sciencesData scienceField (computer science)Journal of Applied Physics
researchProduct

Domain wall pinning in ultra-narrow electromigrated break junctions

2014

The study of magnetic domain walls in constrained geometries is an important topic, yet when dealing with extreme nanoscale magnetic systems artefacts can often dominate the measurements and obscure the effects of intrinsic magnetic origin. In this work we study the evolution of domain wall depinning in electromigrated ferromagnetic junctions which are both initially fabricated and subsequently tailored in-situ in clean ultra-high vacuum conditions. Carefully designed Ni(80)Fe(20) (Permalloy) notched half-ring structures are fabricated and investigated as a function of constriction width by tailoring the size of the contact using controlled in-situ electromigration. It is found that the dom…

PermalloyDomain wall (magnetism)Materials scienceMagnetic domainFerromagnetismField (physics)Condensed matter physicsGeneral Materials ScienceCondensed Matter PhysicsPinning forceElectromigrationSymmetry (physics)Journal of Physics: Condensed Matter
researchProduct

Synchronous precessional motion of multiple domain in a ferromagnetic nanowire by perpendicular field pulses

2014

Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest …

010302 applied physicsPhysicsMagnetization dynamicsMultidisciplinaryMagnetic domainCondensed matter physicsField (physics)Magnetic storageGeneral Physics and Astronomy02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyDisplacement (vector)Articlelaw.inventionDomain (software engineering)Magnetic fieldNuclear magnetic resonanceDomain wall (magnetism)law0103 physical sciencesddc:5300210 nano-technologyNature Communications
researchProduct

Domain-wall induced large magnetoresistance effects at zero applied field in ballistic nanocontacts

2013

We determine magnetoresistance effects in stable and clean Permalloy nanocontacts of variable cross section, fabricated by UHV deposition and in situ electromigration. To ascertain the magnetoresistance (MR) effects originating from a magnetic domain wall, we measure the resistance values with and without such a wall at zero applied field. In the ballistic transport regime, the MR ratio reaches up to 50% and exhibits a previously unobserved sign change. Our results can be reproduced by recent atomistic calculations for different atomic configurations of the nanocontact, highlighting the importance of the detailed atomic arrangement for the MR effect. DOI: 10.1103/PhysRevLett.110.067203

PermalloyMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsMagnetic domainCondensed matter physicsMagnetoresistanceField (physics)530 PhysicsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology530 Physik021001 nanoscience & nanotechnology01 natural sciencesElectromigrationCross section (physics)Domain wall (magnetism)Ballistic conductionMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physics0210 nano-technologyPhysical Review Letters 110, 067203
researchProduct

Direct imaging of chiral domain walls and N\'eel-type skyrmionium in ferrimagnetic alloys

2021

The evolution of chiral spin structures is studied in ferrimagnet Ta/Ir/Fe/GdFeCo/Pt multilayers as a function of temperature using scanning electron microscopy with polarization analysis (SEMPA). The GdFeCo ferrimagnet exhibits pure right-hand N\'eel-type domain wall (DW) spin textures over a large temperature range. This indicates the presence of a negative Dzyaloshinskii-Moriya interaction (DMI) that can originate from both the top Fe/Pt and the Co/Pt interfaces. From measurements of the DW width, as well as complementary magnetic characterization, the exchange stiffness as a function of temperature is ascertained. The exchange stiffness is surprisingly mostly constant, which is explaine…

Condensed Matter - Materials Science
researchProduct

Quantification of Competing Magnetic States and Switching Pathways in Curved Nanowires by Direct Dynamic Imaging.

2020

For viable applications, spintronic devices based, for example, on domain wall motion need to be highly reliable with stable magnetization states and highly reproducible switching pathways transforming one state to another. The existence of multiple stable states and switching pathways in a system is a definitive barrier for device operation, yet rare and stochastic events are difficult to detect and understand. We demonstrate an approach to quantify competing magnetic states and stochastic switching pathways based on time-resolved scanning electron microscopy with polarization analysis, applied to the technologically relevant control of vortex domain wall chirality via field and curvature …

PhysicsMagnetizationSpintronicsChemical physicsDynamic imagingGeneral EngineeringRare eventsNanowireGeneral Physics and AstronomyGeneral Materials SciencePolarization (waves)CurvatureVortexACS nano
researchProduct

Spin Currents injected electrically and thermally from highly spin polarized Co$_2$MnSi

2015

We demonstrate the injection and detection of electrically and thermally generated spin currents probed in Co$_2$MnSi/Cu lateral spin valves. Devices with different electrode separations are patterned to measure the non-local signal as a function of the electrode spacing and we determine a relatively high effective spin polarization $\alpha$ of Co$_2$MnSi to be 0.63 and the spin diffusion length of Cu to be 500 nm at room temperature. The electrically generated non-local signal is measured as a function of temperature and a maximum signal is observed for a temperature of 80 K. The thermally generated non-local signal is measured as a function of current density and temperature in a second h…

PhysicsPhysics and Astronomy (miscellaneous)Spin polarizationCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsSignalMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectrodeSpin diffusionHarmonic010306 general physics0210 nano-technologySpin (physics)Current density
researchProduct

Commensurability between Element Symmetry and the Number of Skyrmions Governing Skyrmion Diffusion in Confined Geometries

2020

Magnetic skyrmions are topological magnetic structures, which exhibit quasi-particle properties and can show enhanced stability against perturbation from thermal noise. Recently, thermal Brownian diffusion of these quasi-particles has been found in continuous films and applications in unconventional computing have received significant attention, which however require structured elements. Thus, as the next necessary step, we here study skyrmion diffusion in confined geometries and find it to be qualitatively different: The diffusion is governed by the interplay between the total number of skyrmions and the structure geometry. In particular, we ascertain the effect of circular and triangular …

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physics530 PhysicsSkyrmionPerturbation (astronomy)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyMagnetic skyrmion010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics530 Physik01 natural sciencesCommensurability (mathematics)Symmetry (physics)0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsThermalElectrochemistryDiffusion (business)0210 nano-technologyBrownian motionAdvanced Functional Materials
researchProduct

Quantification of competing magnetic states and switching pathways in curved nanowires by direct dynamic imaging

2020

For viable applications, spintronic devices based e.g. on domain wall motion need to be highly reliable with stable magnetization states and highly reproducible switching pathways transforming one state to another. The existence of multiple stable states and switching pathways in a system is a definitive barrier for device operation, yet rare and stochastic events are difficult to detect and understand. We demonstrate an approach to quantify competing magnetic states and stochastic switching pathways based on time-resolved scanning electron microscopy with polarization analysis, applied to the technologically relevant control of vortex domain wall chirality via field and curvature in curved…

Condensed Matter - Mesoscale and Nanoscale Physics530 PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciences530 Physik
researchProduct

Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy

2016

Magnetic skyrmions are highly promising candidates for future spintronic applications such as skyrmion racetrack memories and logic devices. They exhibit exotic and complex dynamics governed by topology and are less influenced by defects, such as edge roughness, than conventionally used domain walls. In particular, their finite topological charge leads to a predicted "skyrmion Hall effect", in which current-driven skyrmions acquire a transverse velocity component analogous to charged particles in the conventional Hall effect. Here, we present nanoscale pump-probe imaging that for the first time reveals the real-time dynamics of skyrmions driven by current-induced spin orbit torque (SOT). We…

PhysicsCondensed Matter - Materials ScienceSpintronicsCondensed matter physicsSkyrmionGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyMagnetic skyrmion021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesCharged particleComplex dynamicsHall effectQuantum mechanics0103 physical sciencesddc:530Electric current010306 general physics0210 nano-technologyTopological quantum numberNature Physics
researchProduct

Magnetic state control via field-angle-selective switching in asymmetric rings

2020

Switching the chirality of the vortex state in asymmetric ferromagnetic rings is interesting for multistate memory devices, logic elements, and stray-field-based rotation sensors. This study shows that different magnetic states can be configured by carefully tuning the magnetic field angle. Using time-resolved scanning electron microscopy with polarization analysis to image the magnetization dynamics of these rings, the authors detect competing switching pathways for certain field angles. These different pathways do not change the resulting magnetic states, though, which is advantageous for engineering reliable devices for a range of potential spintronic applications.

Magnetization dynamicsMaterials scienceSpintronicsCondensed matter physicsField (physics)530 PhysicsGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyPolarization (waves)530 Physik01 natural sciencesChirality (electromagnetism)Vortex stateMagnetic fieldFerromagnetism0103 physical sciences010306 general physics0210 nano-technology
researchProduct

Domain Wall Spin Structures in Mesoscopic Fe Rings probed by High Resolution SEMPA

2016

We present a combined theoretical and experimental study of the energetic stability and accessibility of different domain wall spin configurations in mesoscopic magnetic iron rings. The evolution is investigated as a function of the width and thickness in a regime of relevance to devices, while Fe is chosen as a material due to its simple growth in combination with attractive magnetic properties including high saturation magnetization and low intrinsic anisotropy. Micromagnetic simulations are performed to predict the lowest energy states of the domain walls, which can be either the transverse or vortex wall spin structure, in good agreement with analytical models, with further simulations …

Mesoscopic physicsCondensed Matter - Materials ScienceMaterials scienceAcoustics and UltrasonicsMagnetic structureCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsVortexMagnetizationTransverse planeMetastability0103 physical sciences010306 general physics0210 nano-technologySaturation (magnetic)
researchProduct