0000000000958771
AUTHOR
C. Cogollos
Axion search with BabyIAXO in view of IAXO
Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both axions and ALPs are very well motivated candidates for Dark Matter, and in addition, they would be copiously produced at the sun's core. A relevant effort during the last decade has been the CAST experiment at CERN, the most sensitive axion helioscope to-date. The International Axion Observatory (IAXO) is a large-scale 4th generation helioscope. As its primary physics goal, IAXO will look for solar axions or ALPs with a signal to backgro…
Scalable haloscopes for axion dark matter detection in the 30$\mu$eV range with RADES
RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the perf…
The 3 Cavity Prototypes of RADES: An Axion Detector Using Microwave Filters at CAST
The Relic Axion Detector Experimental Setup (RADES) is an axion search project that uses a microwave filter as resonator for Dark Matter conversion. The main focus of this publication is the description of the 3 different cavity prototypes of RADES. The result of the first tests of one of the prototypes is also presented. The filters consist of 5 or 6 stainless steel sub-cavities joined by rectangular irises. The size of the sub-cavities determines the working frequency, the amount of sub-cavities determine the working volume. The first cavity prototype was built in 2017 to work at a frequency of $\sim$ 8.4 GHz and it was placed at the 9 T CAST dipole magnet at CERN. Two more prototypes wer…
Next Generation Search for Axion and ALP Dark Matter with the International Axion Observatory
International audience; More than 80 years after the postulation of dark matter, its nature remains one of the fundamental questions in cosmology. Axions are currently one of the leading candidates for the hypothetical, non-baryonic dark matter that is expected to account for about 25% of the energy density of the Universe. Especially in the light of the Large Hadron Collider at CERN slowly closing in on Weakly-Interacting Massive Particle (WIMP) searches, axions and axion-like particles (ALPs) provide a viable alternative approach to solving the dark matter problem. The fact that makes them particularly appealing is that they were initially introduced to solve a long-standing problem in qu…
First results of the CAST-RADES haloscope search for axions at 34.67 $��$eV
We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67$��$eV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of g$_{a��}\gtrsim 4\times10^{-13} \text{GeV}^{-1}$ over a mass range of 34.6738 $��$eV < $m_a$ < 34.6771 $��$eV is set. This constitutes a significant improvement over the current strongest limit set by CAST…