0000000000963496
AUTHOR
Panagiotis Papagiannis
Broad beam transmission data for the shielding of brachytherapy facilities
A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate Ir-192 brachytherapy
PurposeA joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) Ir-19…
Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data
Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was…
Implementation and Validation of an End-to-End Commissioning Process for Model-Based Dose Calculation Algorithms in Brachytherapy
Source strength determination in iridium-192 and cobalt-60 brachytherapy : A European survey on the level of agreement between clinical measurements and manufacturer certificates
Background and purpose: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. Materials and methods: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) highenergy sources (Ir-192 and Co-60), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contac…
Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM
Background and purpose: A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. Methods: A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Results: Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence…
Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding
To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for 60Co, 137CS, 198Au, 192Ir 169Yb, 170Tm, 131Cs, 125I, and 103pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calc…
SU-E-T-509: DICOM Test Case Plans for Model-Based Dose Calculations Methods in Brachytherapy
Purpose: The TG‐186 report provides guidance to early adopters of model‐based dose calculation algorithms (MBDCAs) for brachytherapy. A charge of the AAPM‐ESTRO Working Group on MBDCA is to develop well‐defined test case plans, available as references for the software commissioning process to be performed by end‐users. The aim of this work is to develop test case plans for a generic HDR 192 Ir source alone and in combination with a vaginal cylinder applicator with 180° tungsten‐alloy shielding in a DICOM‐based water phantom. Methods: A DICOM CT dataset was created with a 30 cm diameter water sphere surrounded by air. The voxel size was 1.33×1.33×1.33 mm3 for evaluating absorbed dose rate (c…
Supplement 2 for the 2004 update of the AAPM Task Group No. 43 Report: Joint recommendations by the AAPM and GEC-ESTRO
Since publication of the 2004 update to the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report (TG-43U1) and its 2007 supplement (TG-43U1S1), several new low-energy photon-emitting brachytherapy sources have become available. Many of these sources have satisfied the AAPM prerequisites for routine clinical purposes and are posted on the Brachytherapy Seed Registry managed jointly by the AAPM and the Imaging and Radiation Oncology Core Houston Quality Assurance Center (IROC Houston). Given increasingly closer interactions among physicists in North America and Europe, the AAPM and the Groupe Europeen de Curietherapie-European Society for Radiotherapy & Oncology (GEC…
A generic high-dose rate192Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism
Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-b ...
Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities.
In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for (192)Ir and (60)Co HDR applications to account for several different bunker layouts.For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emit…