0000000000965204

AUTHOR

E. Bozzo

showing 16 related works from this author

On the maximum efficiency of the propeller mass-ejection mechanism

2007

Aims. We derive simple estimates of the maximum efficiency with which matter can be ejected by the propeller mechanism in disk-fed, rotating magnetic neutron stars. Some binary evolution scenarios envisage that this mechanism is responsible for expelling to infinity the mass inflowing at a low rate from the companion star, therefore limiting the total amount of mass that can be accreted by the neutron star. Methods. We demonstrate that, for typical neutron star parameters, a maximum of ��_{pro} < 5.7 (P_{-3})^{1/3} times more matter than accreted can be expelled through the propeller mechanism at the expenses of the neutron star rotational energy (P_{-3} is the NS spin period in unit of …

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)PropellerFOS: Physical sciencesOrder (ring theory)Astronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsStar (graph theory)AstrophysicsMagnetic fieldRotational energyNeutron starSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsLow MassAstrophysics::Galaxy AstrophysicsSpin-½
researchProduct

Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

2016

ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …

CryostatX-ray AstronomyAtomic and Molecular Physics and OpticATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Condensed Matter Physics; Atomic and Molecular Physics and Optics; Materials Science (all)ShieldsCondensed Matter Physic01 natural sciencesThermal Filterlaw.invention010309 opticsTelescopeATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Atomic and Molecular Physics and Optics; Materials Science (all); Condensed Matter PhysicsOpticsSettore FIS/05 - Astronomia E AstrofisicaConceptual designlawAtomic and Molecular Physics0103 physical sciencesGeneral Materials ScienceElectronics010303 astronomy & astrophysicsThermal FiltersPhysicsX-ray astronomyX-IFUbusiness.industryDetectorCondensed Matter PhysicsAtomic and Molecular Physics and OpticsATHENACardinal pointMaterials Science (all)and Opticsbusiness
researchProduct

An XMM-Newton and INTEGRAL view on the hard state of EXO 1745-248 during its 2015 outburst

2017

CONTEXT - Transient low-mass X-ray binaries (LMXBs) often show outbursts lasting typically a few-weeks and characterized by a high X-ray luminosity ($L_{x} \approx 10^{36}-10^{38}$ erg/sec), while for most of the time they are found in X-ray quiescence ($L_X\approx10^{31} -10^{33}$ erg/sec). EXO 1745-248 is one of them. AIMS - The broad-band coverage, and the sensitivity of instrument on board of {\xmm} and {\igr}, offers the opportunity to characterize the hard X-ray spectrum during {\exo} outburst. METHODS - In this paper we report on quasi-simultaneous {\xmm} and {\igr} observations of the X-ray transient {\exo} located in the globular cluster Terzan 5, performed ten days after the begin…

PhotonX-rays: BinarieAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesTechniques: SpectroscopicAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsneutron; Techniques: Spectroscopic; X-rays: Binaries; X-rays: Bursts; X-rays: Individuals: EXO 1745-248; Astronomy and Astrophysics; Space and Planetary Science [Stars]01 natural sciencesIonization0103 physical sciencesX-rays: BurstAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusAstronomy and AstrophysicStars: neutronNeutron starSpace and Planetary ScienceGlobular clusterElectron temperatureAstrophysics - High Energy Astrophysical PhenomenaX-rays: Individuals: EXO 1745-248Doppler broadening
researchProduct

GRO J1744-28: an intermediate B-field pulsar in a low mass X-ray binary

2015

The bursting pulsar, GRO J1744-28, went again in outburst after $\sim$18 years of quiescence in mid-January 2014. We studied the broad-band, persistent, X-ray spectrum using X-ray data from a XMM-Newton observation, performed almost at the peak of the outburst, and from a close INTEGRAL observation, performed 3 days later, thus covering the 1.3-70.0 keV band. The spectrum shows a complex continuum shape that cannot be modelled with standard high-mass X-ray pulsar models, nor by two-components models. We observe broadband and peaked residuals from 4 to 15 keV, and we propose a self-consistent interpretation of these residuals, assuming they are produced by cyclotron absorption features and b…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Stars: individual: GRO J1744-28 -X-rays: binarieLine: identificationAstrophysics::High Energy Astrophysical PhenomenaCyclotronX-ray binaryFOS: Physical sciencesLine: formationAstronomy and AstrophysicsAstrophysicsX-rays: generalMagnetic fieldlaw.inventionSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary SciencelawIonizationHarmonicsThermalAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL

2015

Broad emission features of abundant chemical elements, such as Iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc where doppler an…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsSpectral lineSettore FIS/05 - Astronomia E AstrofisicaIonizationAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAccretion accretion discAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)AstronomyAstronomy and AstrophysicsX-rays: binarieStars: neutronNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceReflection (physics)X-rays: individual (GX 3+1)Low MassRelativistic quantum chemistryAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Spectral and timing properties of IGR J00291+5934 during its 2015 outburst

2016

We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft photons ($\sim0.9$ keV) by an electron population with kT$_e\sim30$ keV, and at lower energies by a blackbody component with kT$\sim0.5$ keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a $3��$ confidence leve…

AccretionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesPulsar0103 physical sciencesneutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion; Accretion discs; Stars]Emission spectrumSpectroscopy010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicOrbital periodX-rays: binarieStars: neutronNeutron starAmplitude13. Climate actionSpace and Planetary ScienceAccretion discAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)Monthly Notices of the Royal Astronomical Society
researchProduct

X-Ray Eclipse Time Delays in 4U2129+47

2007

4U 2129+47 was discovered in the early 80's and classified as an accretion disk corona source due to its broad and partial X-ray eclipses. The 5.24 hr binary orbital period was inferred from the X-ray and optical light curve modulation, implying a late K or M spectral type companion star. The source entered a low state in 1983, during which the optical modulation disappeared and an F8 IV star was revealed, suggesting that 4U 2129+47 might be part of a triple system. The nature of 4U 2129+47 has since been investigated, but no definitive conclusion has been reached. Here, we present timing and spectral analyses of two XMM-Newton observations of this source, carried out in May and June, 2005.…

Physicsaccretion disksAstrophysics (astro-ph)Binary numberbinaries: eclipsingFOS: Physical sciencesAstronomy and AstrophysicsX-rays: starsAstrophysicsAstrophysicsLight curveOrbital periodCoronastars: individual: 4U 2129+47stars: neutronaccretionSpace and Planetary ScienceOrbital motionModulation (music)Center of massEclipse
researchProduct

Euclid preparation XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis

2022

The combination and cross-correlation of the upcoming $Euclid$ data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of $Euclid$ and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on $Euclid$-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundstatistical [methods]FOS: Physical sciencesAstrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsJoint analysiskosmologia01 natural sciencesmethodsNOpimeä aine[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]mikroaallotSettore FIS/05 - Astronomia e Astrofisicasurveys0103 physical sciencestszsurvey010303 astronomy & astrophysicsPhysicsmethods: statistical010308 nuclear & particles physicsComputer Science::Information RetrievalmaailmankaikkeusAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicscross-correlation115 Astronomy Space scienceCosmic background radiation; Large-scale structure of Universe; Methods: statistical; Surveyskosminen taustasäteilySpace and Planetary Sciencemethodlarge-scale structure of Universepimeä energia[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The Large Observatory for X-ray Timing (LOFT)

2012

High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultra-dense matter and to black hole masses and spins. A 10 m^2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M…

Event horizonX-ray timingMission7. Clean energy01 natural sciencesneutron starsT175 Industrial research. Research and developmentBINARIESSettore FIS/05 - Astronomia E AstrofisicaALICESILICON DRIFT DETECTORObservatoryEQUATIONneutron star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsMissions X-ray timing compact objects black holes neutron starscompact objectsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaPROPORTIONAL COUNTER[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusCosmic VisionX-ray astronomy; high time variabilityAstrophysics::High Energy Astrophysical Phenomenablack holes; compact objects; Missions; neutron stars; X-ray timing;FOS: Physical sciencesMissionsX-ray astronomy0103 physical sciencesOSCILLATIONSInstrumentation and Methods for Astrophysics (astro-ph.IM)Supermassive black holehigh time variability010308 nuclear & particles physicsAstronomyCONSTRAINTSAstronomy and Astrophysicsblack holesGalaxyBlack holeNeutron starSpace and Planetary ScienceQB460-466 AstrophysicsDISCOVERYBLACK-HOLESUPERAGILE
researchProduct

The on-board calibration system of the X-ray Imaging Polarimetry Explorer (XIPE)

2016

The calibration system for XIPE is aimed at providing a way to check and correct possible variations of performance of the Gas Pixel Detector during the three years of operation in orbit (plus two years of possible extended operation), while facilitating the observation of the celestial sources. This will be performed by using a filter wheel with a large heritage having a set of positions for the calibration and the observation systems. In particular, it will allow for correcting possible gain variation, for measuring the modulation factor using a polarized source, for removing non interesting bright sources in the field of view and for observing very bright celestial sources. The on-board …

Physicsta115business.industryCalibration (statistics)DetectorPolarimetryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONAstrophysics::Instrumentation and Methods for AstrophysicsField of view02 engineering and technologyOrbital mechanics021001 nanoscience & nanotechnology01 natural sciences010309 opticsOpticsFilter (video)0103 physical sciencesModulation (music)Orbit (dynamics)0210 nano-technologybusinessRemote sensing
researchProduct

Euclid preparation - XVII. Cosmic Dawn Survey: Spitzer Space Telescope observations of the Euclid deep fields and calibration fields

2022

Artículo escrito por un elevado núnmero de autores, sólo se referencian el qque aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiere

SAMPLELarge-scale structure of UniverseDATA RELEASEFormationSurveysobservations Dark energy Dark matter Galaxy: formation Large-scale structure of Universe Surveys [Cosmology]kosmologiaAstrophysicsCosmology: observationdark mattergalaksijoukotpimeä ainesurveysDark energyDark matterobservations [Cosmology]dark energyObservationsLEGACY SURVEYAstrophysics of GalaxiesFísicaAstronomy and Astrophysics115 Astronomy Space scienceEVOLUTIONCosmologygalaksitGALAXIESCosmology: observations; Dark energy; Dark matter; Galaxy: formation; Large-scale structure of Universe; SurveysGalaxyformation [Galaxy]Space and Planetary ScienceGalaxy: formationcosmology: observationslarge-scale structure of Universepimeä energiaCosmology and Nongalactic Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511-3057

2010

We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron tempe…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E Astrofisicastars neutron X-rays binaries X-rays individual IGR J17511-3057Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

XIPE: the x-ray imaging polarimetry explorer

2016

XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…

X-ray AstronomyHigh-energy astronomyPolarimetryX-ray opticsX-ray telescopeCondensed Matter Physic01 natural sciencesObservatory0103 physical sciencesPolarimetryElectronicOptical and Magnetic MaterialsSpectral resolutionElectrical and Electronic Engineering010303 astronomy & astrophysicsGas Pixel DetectorPhysicsX-ray astronomyta115X-ray optics010308 nuclear & particles physicsElectronic Optical and Magnetic MaterialApplied MathematicsVegaAstronomyComputer Science Applications1707 Computer Vision and Pattern RecognitionGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray opticsCondensed Matter PhysicsComputer Science ApplicationsApplied MathematicGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications; Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringComputer Vision and Pattern RecognitionX-ray optic
researchProduct

A Spectral Insight into the Physics of Accreting ms Pulsars

2010

The broadened iron lines observed from accreting compact objects are most easily interpreted in terms of reflection onto the accretion disc of the hard X-ray photons emitted by the central source. In this context, such a broadness is due to the relativistic motion of the reflecting plasma, in the deep gravitational well of the compact object, and can thus serve as a probe of the inner radius of the disc. Here we report about the discovery of such features from a couple of accreting millisecond pulsars, and discuss the constraints which can be derived on the magnetospheric radius.

X-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaline: profileprofiles; X-rays: binaries [accretion accretion disks; line]accretion accretion disk
researchProduct

LOFT - A large observatory for x-ray timing

2010

The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong gravitational field effects, measuring the mass and spin of black holes and the equation of state of ultradense matter are among the goals of such observations. At present prospects for future, non-focused X-ray timing experiments following the exciting age of RXTE/PCA are uncertain. Technological limitations are unavoidably faced in the conception and development of experiments with effective area of several square meters, as needed in order to…

High Energy Astrophysical Phenomena (astro-ph.HE)sezeleApplied MathematicsSilicon drift chambersFOS: Physical sciencesComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsCompact sourcesCompact sources; High energy astrophysics; Silicon drift chambers; Timing; X-rays; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia E AstrofisicaX-raysElectronicTimingOptical and Magnetic MaterialsElectrical and Electronic EngineeringAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaInstrumentation and Methods for Astrophysics (astro-ph.IM)Observatories X-rays Sensors Silicon Physics Polarimetry Electronics Imaging spectroscopyHigh energy astrophysics
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct