0000000000968178

AUTHOR

Chen Chen

showing 4 related works from this author

Diquark correlations in hadron physics: Origin, impact and evidence

2020

The last decade has seen a marked shift in how the internal structure of hadrons is understood. Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularised QCD have provided strong indications that soft quark+quark (diquark) correlations play a crucial role in hadron physics. For example, theory indicates that the appearance of such correlations is a necessary consequence of dynamical chiral symmetry breaking, viz. a corollary of emergent hadronic mass that is responsible for almost all visible mass in the universe; experiment has uncovered signals for such correlations in the flavour-separation of the proton's elect…

Nuclear TheoryHigh Energy Physics::LatticeHadronNuclear Theoryhiukkasfysiikka01 natural sciencesHigh Energy Physics - ExperimentBroad spectrumHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Hadron physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentQuantum chromodynamicsPhysicsDiquark correlationsBaryon spectra and structureHigh Energy Physics - Lattice (hep-lat)symmetry breaking: chiralDyson-Schwinger equationsDiquarkbound statediquark: correlationHigh Energy Physics - PhenomenologyQuark modelsChiral symmetry breakingPhenomenology (particle physics)QuarkNuclear and High Energy PhysicsParticle physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]diquark correlationsNuclear Theory (nucl-th)High Energy Physics - Latticehadron physics0103 physical sciencesquantum chromodynamics010306 general physicsBaryon spectra and structure; Diquark correlations; Dyson-Schwinger equations; Lattice quantum chromodynamics; Quantum chromodynamics; Quark modelskvarkit010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]hadron spectroscopyHigh Energy Physics::PhenomenologyLattice quantum chromodynamicsform factor: electromagnetic[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment
researchProduct

Determinants of Quality of Life According to Cognitive Status in Parkinson’s Disease

2020

Background: Quality of life (QoL) was worse in Parkinson's disease patients with mild cognitive impairment (PD-MCI) or dementia (PDD) than PD patients with normal cognition (PD-NC). The aim of this study was to investigate and compare the potential heterogeneous determinants of QoL in PD patients with different cognitive statuses. Methods: We recruited 600 PD patients, including 185 PD-NC patients, 336 PD-MCI patients and 79 PDD patients, in this cross-sectional study. All patients completed the QoL assessment by the 39-item Parkinson's Disease Questionnaire (PDQ-39), as well as clinical evaluations and neuropsychological tests. The determinants of the QoL were analysed by multiple stepwise…

0301 basic medicineAgingmedicine.medical_specialtyParkinson's diseaseCognitive NeuroscienceDiseasebehavioral disciplines and activitieslcsh:RC321-57103 medical and health sciences0302 clinical medicinemild cognitive impairmentQuality of lifeRating scalemental disordersmedicineDementialcsh:Neurosciences. Biological psychiatry. NeuropsychiatryDepression (differential diagnoses)Original Researchbusiness.industryNeuropsychologyCognitiondeterminantsmedicine.diseasehumanitiesnervous system diseases030104 developmental biologyquality of lifePhysical therapyParkinson’s diseasebusinesshuman activities030217 neurology & neurosurgeryNeurosciencedementiaFrontiers in Aging Neuroscience
researchProduct

New strategy for analog circuit performance evaluation under disturbance and fault value

2014

Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2014/728201 Focus on this issue of disturbance and fault value is inevitable in data collection about analog circuit. A novel strategy is developed for analog circuit online performance evaluation based on fuzzy learning and double weighted support vector machine (DWMK-FSVM). First, the double weighted support vector regression machine is employed to be the indirect evaluation means, relied on the college analog electronic technology experiment to evaluate analog circuit. Second, the superiority of fuzzy learning also is addressed to realize a…

Engineering (all)Article Subjectlcsh:TA1-2040lcsh:MathematicsVDP::Technology: 500::Mechanical engineering: 570Mathematics (all)lcsh:Engineering (General). Civil engineering (General)lcsh:QA1-939Mathematics (all); Engineering (all)
researchProduct

Measurement of the W boson mass

1996

The W boson mass is measured using proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 1.7fb(-1) recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/p(T) distribution of a sample of W ->mu y decays and the phi* distribution of a sample of Z -> mu mu decays the W boson mass is determined to be

13000 GeV-cmsTevatronparton: distribution functionQC770-798W: leptonic decay7. Clean energy01 natural sciencesLuminosityPhysics Particles & FieldsSubatomär fysikHadron-Hadron scattering (experiments)scattering [p p]Electroweak interactionNuclear Experimentparticle identification [muon]Settore FIS/01PhilosophyPhysicsCoupling (probability)CERN LHC CollHadron colliderPhysical SciencesTransverse masscolliding beams [p p]distribution function [parton]Collider Detector at FermilabParticles and fieldCOLLISIONSp p: scatteringCERN PBARP COLLIDERAstrophysics::High Energy Astrophysical PhenomenaW: mass: measuredStandard ModelNuclear physicsddc:530010306 general physics0206 Quantum PhysicsMuonScience & Technology010308 nuclear & particles physicsWeinberg angleHEPFERMILAB TEVATRONElectroweak interaction Hadron-Hadron scattering (experiments) QCD For- ward physicsCDFp p: colliding beamsPhysics::Instrumentation and DetectorsElectron–positron annihilation= 1.8 TEVGeneral Physics and Astronomy= 1.8 TEV; PBARP COLLISIONS; DECAYVector bosonHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Computer Science::Systems and ControlSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PhysicFermilabBosonPhysics0105 Mathematical PhysicsStatistics::ApplicationsSettore FIS/01 - Fisica Sperimentalestatistical [error]Nuclear & Particles PhysicsCENTRAL TRACKING CHAMBERerror: statisticalCENTRAL ELECTROMAGNETIC CALORIMETERTransverse momentum0202 Atomic Molecular Nuclear Particle and Plasma PhysicsLHCmass: measured [W]Particle Physics - ExperimentStatistics::TheoryParticle physicsNuclear and High Energy Physicselectroweak interaction: precision measurementRegular Article - Experimental PhysicsTRANSVERSE ENERGYFOS: Physical sciencesmuon: particle identification530Particle decayPBARP COLLISIONSNuclear and particle physics. Atomic energy. Radioactivityprecision measurement [electroweak interaction]0103 physical sciencesForward physicVECTOR BOSONElectroweak interaction Hadron-Hadron scattering (experiments) QCD Forward physicsCERN PBARP COLLIDER; CENTRAL ELECTROMAGNETIC CALORIMETER; CENTRAL TRACKING CHAMBER; = 1.8 TEV; PARTON DISTRIBUTIONS; FERMILAB TEVATRON; VECTOR BOSON; TRANSVERSE ENERGY; CDF; COLLISIONShep-exHigh Energy Physics::PhenomenologyLHC-BQCDleptonic decay [W]LHCbPARTON DISTRIBUTIONSMass spectrumForward physicsPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentDECAYHumanitiesexperimental results
researchProduct